Для трехзначного делимого, требуемое по условию деление на 5 будем выполнять отдельно с предварительными преобразованиями для упрощения. Делитель делится на по таблице умножения, кроме может быть последнего 55/5 = (11 * 5)/5 = 11. Итак:
1) 400 : 5 = 10 * 40 : 5 = 10 * 8 = 80.
Откуда:
400 : 25 = 80 : 5.
Получено требуемое по условию равенство.
2) 315 : 5 = (10 * 30 + 15) : 5 = 10 * 30 : 5 + 15 : 5 = 10 * 6 + 3 = 63.
Следовательно:
315 : 45 = 63 : 9.
Равенство в соответствии с образцом готово.
3) 175 : 5 = (10 * 15 + 25) : 5 = 10 * 15 : 5 + 25 : 5 = 10 * 3 + 5 = 35.
Значит:
175 : 35 = 35 : 7.
Запись готова.
4) Результат деления 400 : 5 расписан в 1), тогда:
495 : 5 = (400 + 50 + 45) : 5 = 400 : 5 + 50 : 5 + 45 : 5 = 80 + 10 + 9 = 99.
Поэтому:
495 : 55 = 99 : 11.
Пошаговое объяснение:
8 : 7 = 1 (ост. 1) проверка: 1 * 7 + 1 = 8
8 : 6 = 1 (ост. 2) ⇒ 1 * 6 + 2 = 8
5 : 8 = 0 (ост. 5) ⇒ 0 * 8 + 5 = 5
50 : 9 = 5 (ост. 5) ⇒ 5 * 9 + 5 = 50
40 : 9 = 4 (ост. 4) ⇒ 4 * 9 + 4 = 40
30 : 9 = 3 (ост. 3) ⇒ 3 * 9 + 3 = 30
61 : 7 = 8 (ост. 5) ⇒ 8 * 7 + 5 = 61
84 : 9 = 9 (ост. 3) ⇒ 9 * 9 + 3 = 84
70 : 8 = 8 (ост. 6) ⇒ 8 * 8 + 6 = 70
48 : 20 = 2 (ост. 8) ⇒ 2 * 20 + 8 = 48
56 : 10 = 5 (ост. 6) ⇒ 5 * 10 + 6 = 56
32 : 20 = 1 (ост. 12) ⇒ 1 * 20 + 12 = 32
14 : 30 = 0 (ост. 14) ⇒ 0 * 30 + 14 = 14
8 : 10 = 0 (ост. 8) ⇒ 0 * 10 + 8 = 8
9 : 12 = 0 (ост. 9) ⇒ 0 * 12 + 9 = 9