1. найдем производную. 6х²-12х-18=6*(х²-2х-3), найдем критические точки. 6*(х²-2х-3)=0, по Виету х=-1; х=3
-13
+ - +
функция возрастает при х∈(-∞;-1] и при х∈ [3;+∞), и убывает при х∈ [-1;3]
2 производная равна 6х²-6х-12=0; 6(х²-х-2)=0; по Виету х=2; х=-1
-12
+ - +
функция возрастает при х∈(-∞;-1] и при х∈ [2;+∞), и убывает при х∈ [-1;2]
3.производная равна -4/х²+2/х³=(2-4х)/х³; х=0; х=0.5
00.5
- + -
х=0.5- точка максимума, максимум равен 4/(1/2)-1/(1/2)²=8-4=4
4. производная равна -10/х²+14/х³=0, 14-10х=0; х=1.4
01.4
- + -
х=х=1.4- точка максимума, максимум равен 10/(1.4)-1/(1.4)²=1300/196=
315/49
1. найдем производную. 6х²-12х-18=6*(х²-2х-3), найдем критические точки. 6*(х²-2х-3)=0, по Виету х=-1; х=3
-13
+ - +
функция возрастает при х∈(-∞;-1] и при х∈ [3;+∞), и убывает при х∈ [-1;3]
2 производная равна 6х²-6х-12=0; 6(х²-х-2)=0; по Виету х=2; х=-1
-12
+ - +
функция возрастает при х∈(-∞;-1] и при х∈ [2;+∞), и убывает при х∈ [-1;2]
3.производная равна -4/х²+2/х³=(2-4х)/х³; х=0; х=0.5
00.5
- + -
х=0.5- точка максимума, максимум равен 4/(1/2)-1/(1/2)²=8-4=4
4. производная равна -10/х²+14/х³=0, 14-10х=0; х=1.4
01.4
- + -
х=х=1.4- точка максимума, максимум равен 10/(1.4)-1/(1.4)²=1300/196=
315/49
Биномиальным называют распределение количества «успехов» в последовательности из n независимых случайных экспериментов, таких, что вероятность «успеха» в каждом из них постоянна и равна p.
Иначе говоря, пусть происходит n независимых испытаний, в каждом из которых событие может появится с одной и той же вероятностью p. Тогда случайная величина X - количество испытаний, в которых появилось событие, имеет биномиальное распределение вероятностей.
Она может принимать целые значения от 0 (событие не произошло ни разу) до n (событие произошло во всех испытаниях). Формула для вычисления соответствующих вероятностей - уже известная нам формула Бернулли для схемы повторных независимых испытаний:
P(X=k)=Ckn⋅pk⋅(1−p)n−k,k=0,1,2,...,n.
Для биномиального распределения известны готовые формулы для математического ожидания и дисперсии:
M(X)=np,D(X)=npq,σ(X)=npq−−−√.
Пошаговое объяснение: