М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Windsorcastle
Windsorcastle
22.11.2021 08:40 •  Математика

Используя разложение подынтегральной функции в степенной ряд, вычислить указанный

определенный интеграл с точностью до 0,001.

2)Найти разложение в степенной ряд по степеням x решения дифференциального уравнения (записать три первых, отличных от нуля, члена этого разложения)

👇
Ответ:
prostoliii
prostoliii
22.11.2021

Пошаговое объяснение:

Этот небольшой урок позволит не только освоить типовую задачу, которая довольно часто встречается на практике, но и закрепить материалы статьи Разложение функций в степенные ряды. Нам потребуется таблица разложений функций в степенные ряды, которую можно раздобыть на странице Математические формулы и таблицы. Кроме того, читатель должен понимать геометрический смысл определенного интеграла и обладать элементарными навыками интегрирования.

На уроке Определенный интеграл. Как вычислить площадь фигуры? речь шла о том, что определенный интеграл – это площадь. Но в некоторых случаях интеграл является очень трудным или неберущимся, поэтому соответствующую площадь в большинстве случаев можно вычислить только приближенно.

Например: вычислить определенный интеграл . Такой интеграл является неберущимся, но аналитически и геометрически всё хорошо:

Приближенное вычисление определенного интеграла с разложения подынтегральной функции в ряд

Мы видим, что подынтегральная функция непрерывна на отрезке , а значит, площадь существует, и определенный интеграл  численно равен заштрихованной площади. Беда только в том, что данную площадь можно вычислить лишь приближенно с определенной точностью. На основании вышеизложенных фактов и  появилась типовая задача курса высшей математики.

Пример 1

Вычислить приближенно определенный интеграл, предварительно разложив подынтегральную функцию в ряд Маклорена, с точностью до 0,001

Решение: Идея метода состоит в том, чтобы заменить подынтегральную функцию соответствующим степенным рядом (если он, конечно, сходится к ней на промежутке интегрирования).

Поэтому на первом этапе нужно разложить подынтегральную функцию в ряд Маклорена. Эту рас на практике задачу мы очень подробно рассмотрели на уроке Разложение функций в степенные ряды. Кстати, рекомендую всем прочитать, поскольку некоторые вещи, о которых сейчас пойдет разговор, могут показаться малопонятными.

Используем табличное разложение:

В данном случае  

Обратите внимание, как я записал ряд. Специфика рассматриваемого задания требует записывать только несколько первых членов ряда. Мы не пишем общий член ряда , он здесь ни к чему.

Чем больше членов ряда мы рассматриваем – тем лучше будет точность. Сколько слагаемых рассматривать? Из практики могу сказать, что в большинстве случаев для достижения точности 0,001 достаточно записать первые 4 члена ряда. Иногда требуется меньше. А иногда больше. Если в практическом примере их не хватило, то придётся переписывать всё заново =( Поэтому целесообразно провести предварительный черновой анализ или перестраховаться, изначально записав побольше членов (собственно, такой же совет как и для приближенного вычисления значения функции с ряда).

Следует также отметить, что точность до трёх знаков после запятой самая популярная. Также в ходу и другая точность вычислений, обычно 0,01 или 0,0001.

Теперь второй этап решения:

Сначала меняем подынтегральную функцию на полученный степенной ряд:

Почему это вообще можно сделать? Данный факт пояснялся ещё на уроке о разложении функций в степенные ряды – график бесконечного многочлена  в точности совпадает с графиком функции ! Причем, в данном случае утверждение справедливо для любого значения «икс», а не только для отрезка интегрования .

На следующем шаге максимально упрощаем каждое слагаемое:

Лучше это сделать сразу, чтобы на следующем шаге не путаться с лишними вычислениями.

После упрощений почленно интегрируем всю начинку – напоминаю, что эта замечательная возможность обусловлена равномерной сходимостью степенных рядов:

Интегралы здесь на этом я не останавливаюсь.

На завершающем этапе вспоминаем школьную формулу Ньютона-Лейбница . Для тех, кто не смог устоять перед Ньютоном и Лейбницем, есть урок Определенные интегралы. Примеры решений.

Техника вычислений стандартна: сначала подставляем в каждое слагаемое 0,3, а затем ноль. Для вычислений используем калькулятор:

Сколько членов ряда нужно взять для окончательных вычислений?  Если сходящийся ряд знакочередуется, то абсолютная погрешность вычислений по модулю не превосходит последнего отброшенного члена ряда. В нашем случае уже третий член ряда меньше требуемой точности 0,001, и поэтому если мы его отбросим, то заведомо ошибёмся не более чем на 0,000972 (осознайте, почему!). Таким образом, для окончательного расчёта достаточно первых двух членов: .

ответ: , с точностью до 0,001

Что это получилось за число с геометрической точки зрения?   – это приблизительная площадь заштрихованной фигуры (см. рисунок выше).

Пример 2

Вычислить приближенно определенный интеберущимся, правда, решение не самое

4,4(81 оценок)
Открыть все ответы
Ответ:
алхожа
алхожа
22.11.2021
Сначала нужно раскрыть скобки. 

А для этого вспомним правило раскрытия скобок.

В первую очередь нужно помнить, что если перед скобкой стоит знак минус, то все слагаемые, находящие в скобке, перепишутся (при раскрытии скобок) с противоположным знаком.
К примеру: -(а-с)=-а+с.Если же перед скобкой стоит знак "плюс", то слагаемые в скобке переписываем с тем же знаком. К примеру: (х-у)=х-у.

Итак, раскрываем скобки:

4*2-4*3х-2*9х-2*(-8)=15*1-15*х+3*4+3*(-х)
8-12х-18х+16=15-15х+12-3х

Теперь приведём подобные слагаемые:
8+16-12х-18х=15+12-15х-3х
24-30х=27-18х

Теперь, всё, что с х, перенесём влево, а обычные числа перенесём вправо. Хочу заметить, что при переносе числа или выражения по другую сторону знака равно знак числа или выражения меняется на противоположный.

-30х+18х=27-24
-12х=3 

Разделим обе части уравнения на "-12", таким образом выразив х.

х=3:(-12)
х=-3/12=-1/4. 
4,5(73 оценок)
Ответ:
marshmallowcat2
marshmallowcat2
22.11.2021
Переберем все варианты возможных чисел,их всего 3 *цифра единиц числа равна 1,тогда число десятков равно 1*3=3. получили число: 31,перевернутое: 13 . 31-13=18 *цифра единиц числа равна 2,тогда число десятков равно 2*3=6получили число: 62,перевернутое: 26. 62-26=36 *цифра единиц числа равна 3,тогда число десятков равно 3*3=9получили число: 93, перевернутое: 39. 93-39=54 *если  цифра единиц числа равна 4,тогда число десятков равно 4*3=12 . такого не может быть,т.к. кол-во цифр в числе десятков - обозначается одной цифрой ответ: 62
4,6(53 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ