М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
mishishinatany
mishishinatany
10.01.2023 14:27 •  Математика

решить надо!

Для функции y=-3x^2 найдите:

а)приращение функции дельта y при переходе от точки x0 к точке x0 + дельта x
б)отношение приращения функции дельта y к приращению аргумента дельта x

👇
Ответ:
УЧииНИК
УЧииНИК
10.01.2023
Для решения этой задачи, нужно разобраться с понятием производной функции.

1) Приращение функции (дельта y) при переходе от точки x0 к точке x0 + дельта x можно найти с помощью производной функции. Производная функции показывает наклон касательной линии к графику функции в данной точке.

Для функции y = -3x^2, сначала найдем производную этой функции. Производная функции y = -3x^2 равна -6x.

Теперь подставим x0 + дельта x вместо x в выражение производной: -6(x0 + дельта x).

Выполним раскрытие скобок: -6x0 - 6 * дельта x.

Значение этого выражения и будет приращением функции (дельта y) при переходе от точки x0 к точке x0 + дельта x.

Таким образом, ответом на первое задание будет: приращение функции (дельта y) при переходе от точки x0 к точке x0 + дельта x равно -6x0 - 6 * дельта x.

2) Отношение приращения функции (дельта y) к приращению аргумента (дельта x) можно найти, разделив приращение функции на приращение аргумента.

Отношение приращения функции дельта y к приращению аргумента дельта x равно (-6x0 - 6 * дельта x) / дельта x.

Приращение аргумента дельта x можно сократить в числителе и знаменателе, чтобы упростить выражение: -6x0 / дельта x - 6.

Теперь у нас есть ответ на второе задание: отношение приращения функции дельта y к приращению аргумента дельта x равно -6x0 / дельта x - 6.

Это подробное решение поможет понять школьнику, как получить ответы на оба вопроса и объяснит каждый шаг работы. Важно помнить, что производная функции используется для нахождения приращения функции и ее отношения к приращению аргумента.
4,8(99 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ