Правило (вполне очевидное): если число 5 умножить на любое нечетное число, то полученное число на конце будет иметь тоже 5 (1*5=5; 3*5=15; 5*5=25; 7*5=35; 9*5=45). [При умножении на 5 число всегда будет оканчиваться на 0 или на 5, но произведение нечетных чисел не может дать четного, в частности, заканчивающегося на ноль]
А так как в произведении будет присутствовать 5, то оно будет умножаться на нечетные числа много-много раз, и в конце полученного произведения (огромного!) будет стоять цифра 5.
Имеем несколько рядов полностью с плитками и последний неполный ряд. Чтобы в последнем ряду с 8 плитками плиток было больше на 6, нужно, чтобы ряд имел 7 плиток , а в последнем ряду с 9 плитками была 1 плитка. В нашем случае 7 - 1 = 6 Пишем уравнение для рядов с 8 плитками (8*а +7), где а - количество полных рядов, 7 - это плитки в последнем ряду. Пишем уравнение для рядов с 9 плитками (9*а +1), где а - количество полных рядов, 1 - это плитка в последнем ряду. Плиток одинаковое число в обоих случаях, поэтому выравниваем 8*а +7 = 9*а +1 , решаем а = 6 - подставляем в уравнения для рядов и находим количество плиток. 8*а +7 = 8*6+7 = 55 плиток 9*а +1 = 9*6 +1 = 55 плиток ответ: после строительства дома осталась 55 плиток.
ответ: на 5.
Правило (вполне очевидное): если число 5 умножить на любое нечетное число, то полученное число на конце будет иметь тоже 5 (1*5=5; 3*5=15; 5*5=25; 7*5=35; 9*5=45). [При умножении на 5 число всегда будет оканчиваться на 0 или на 5, но произведение нечетных чисел не может дать четного, в частности, заканчивающегося на ноль]
А так как в произведении будет присутствовать 5, то оно будет умножаться на нечетные числа много-много раз, и в конце полученного произведения (огромного!) будет стоять цифра 5.