Если имеются 2 отрезка разной длины, то нельзя говорить об их пропорциональности, можно говорить только об отношении длин данных отрезков: |CD|/|AB|=k,которое выражается коэффициентом k.
Коэффициент k показывает, сколько раз отрезок |АВ| укладывается в отрезке |CD|.
Если к данным отрезкам добавить третий, то можно установить пропорциональность данных 3-х отрезков, но только в случае, если отрезок |EF|/|CD|=|CD|/|AB|=k. То есть, отрезок |EF| относится к отрезку |CD| такжe, как отрезок |CD| относится к отрезку AB|, и это отношение выражается через коэффициент k.
Например: |AB|=2: |CD|=4: |EF|=8 => 8/4=4/2=2, получилась пропорция с коэффициентом k=2.
Когда говорят, что отрезки |АВ| и |СD| пропорциональны отрезкам |А₁В₁| и |С₁D₁| - это значит, что их отношения равны.
Например: любая измерительная шкала (линейка) имеет бесконечное множество пропорциональных отрезков: 18/9=20/10=4/2=6/3... и тд. - отношения данных числовых отрезков равны и выражаются коэффициентом k=2 (18/9=2 и 6/3=2), то есть:
|АВ|/|СD| = |А₁В₁|/|С₁D₁|,при |АВ|=18; |СD|=9 и |А₁В₁|=6; |С₁D₁|=3
18/9=6/3.
3 человека купили Х+Т+М.
Они входят в число покупателей, купивших по две вещи, значит:
Т+Х купили 15-3=12 человек.
Т+М купили 19-3=16 человек.
М+Х купили 20-3=17 человек.
Всего этими покупателями куплено:
Телевизоров 12+3+16=31 (т)
Оставшиеся 37-31=6 телевизоров купили 6 человек.
Холодильников куплено теми, кто купил больше одного товара,
35-(12+3+17)=32 (х)
Оставшиеся купили 35-32=3 человека.
Все проданные микроволновки куплены покупателями, купившими по 2 или 3 товара.
Следовательно, покупателей было (12+3+17+16) =48 купивших более 1 вещи
и 6+3=9 (чел) купили по одному виду товаров.
Всего 48+9=57 человек.
Из вошедших в магазин 65-57=8 челове ушли без покупок.