Пошаговое объяснение:
рассматриваем два случая, т.к. модуль можно раскрыть с плюсом и с минусом
у вас рассмотрен первый случай, когда модель раскрывают с минусом
|-x| = 6, |x| = 6
|-(|x| - 2)| = 6 - так же верно, отсюда минус
-(|x| - 2) = 6
далее раскрывая скобки получаем запись аналогичную:
(-1) * (|x| - 2)
умножаем (-1) на каждое слагаемое:
(-1) * |x| + (-1) * (-2) = -|x| + 2
так же можно просто запомнить правило:
при умножении на "-" меняем все знаки на противоположные
заметьте, у нас был в скобках |x| стал -|x|, было -2 стало +2
дальнейшее решение:
-|x| + 2 = 6
-|x| = 6 - 2
-|x| = 4
|x| = -4
нет решений, т.к. модуль не может быть отрицательным
рассматриваем второй случай, про который говорили в начале
|x| - 2 = 6
|x| = 6 + 2
|x| = 8
x = -8 или x = 8
2 4
Объяснение:
1) Четырехугольник является параллелограммом по определению, если у него противолежащие стороны параллельны, то есть лежат на параллельных прямых.
ABCD — параллелограмм, если
AB ∥ CD, AD ∥ BC.
Для доказательства параллельности прямых используют один из признаков параллельности прямых, чаще всего — через внутренние накрест лежащие углы. Для доказательства равенства внутренних накрест лежащих углов можно доказать равенство пары треугольников.
Например, это могут быть пары треугольников
1) ABC и CDA,
2) BCD и DAB,
3) AOD и COB,
4) AOB и COD.
2) Четырехугольник является параллелограммом, если у него диагонали в точке пересечения делятся пополам.
Чтобы использовать этот признак параллелограмма, надо сначала доказать, что AO=OC, BO=OD.
3) Четырехугольник является параллелограммом, если у него противолежащие стороны параллельны и равны.
Чтобы использовать этот признак параллелограмма, надо сначала доказать, что AD=BC и AD ∥ BC (либо AB=CD и AB ∥ CD).
Для этого можно доказать равенство одной из тех же пар треугольников.
4) Четырехугольник — параллелограмм, если у него противоположные стороны попарно равны.
Чтобы воспользоваться этим признаком параллелограмма, нужно предварительно доказать, что AD=BC и AB=CD.
Для этого доказываем равенство треугольников ABC и CDA или BCD и DAB.
Это — четыре основных доказательства того, что некоторый четырехугольник — параллелограмм. Существуют и другие доказательства. Например, четырехугольник — параллелограмм, если сумма квадратов его диагоналей равна сумме квадрату сторон. Но, чтобы воспользоваться дополнительными признаками, надо их сначала доказать.
Доказательство с векторов или координат также опирается на определение и признаки параллелограмма, но проводится иначе. Об этом речь будет вестись в темах, посвященных векторам и декартовым координатам.
Среднее арифметическое чисел - это сумма всех чисел, делённая наих количество.
(5,4 + 4,6 + 5,7 + 4,3) : 4 = 20 : 4 = 5 - среднее арифметическое четырёх чисел.
Вiдповiдь: да.