Угол между осями координат 90°, поэтому треугольник получиться прямоугольным. Найти площадь круга можно через радиус, а радиус, описанной окружности около прямоугольного треугольника, можно найти через его гипотенузы (половина от гип.) т.к. угол в 90° опирается на диаметр, то есть гипотенуза это диаметр. Так вот нам надо найти гипотенузы этого треугольника, а именно её половину. Для этого найдём точки пересечения прямой с осями координат, а затем расстояние между ними, это и будет гипотенуза, дальше думаю понятно.
z = a + b*i
Оно же в тригонометрической форме:
z = r*(cos Ф + i*sin Ф)
Здесь r = √(a^2 + b^2); Ф = arctg(b/a)
2) z = 1 - i
a = 1; b = -1; r = √(1^2 + (-1)^2) = √2; Ф = arctg(-1/1) = -pi/4
z = √2*(cos(-pi/4) + i*sin(-pi/4))
3)
Сначала представим z в обычном алгебраическом виде:
Для этого умножим числитель и знаменатель на комплексно-сопряженное.
Теперь переведем его в тригонометрическую форму
Здесь нам номер 2), в котором мы уже представляли 1 - i.
По формуле Муавра для степени и корня комплексного числа:
z^n = r^n*(cos(n*Ф) + i*sin(n*Ф))