Через вершины B, C и D параллелограмма ABCD проходит окружность, причём эта окружность касается прямой AD в точке D и Ad = 4. Сторона AB пересекает окружность в точке E и CE = 5. 1) найти BD; 2) найти CD ; 3) найти AE
Пфф, так как эти углы равны, а АО делит его пополам, то это биссектриса. Здесь можно использовать понятие (осевой) симметрии. Будем поворачивать треугольник АОВ в пространстве вокруг линии ОА. Точки А и О останутся на месте, линия ОВ наложится на линию ОС (углы АОВ и АОС равны!) , при этом точка В совместится с точкой С, потому что длина отрезка АВ равна длине отрезка АС. Значит, отрезок ОВ совместится с отрезком ОС, а значит, ОВ=ОС. Теперь треугольники АОВ и АОС равны, следовательно, углы ОАВ и ОАС равны. Да, данная задача ни к одному из трёх признаков равенства треугольников не подходит, и потому требует доказательства (хотя равенство треугольников АОС и АОВ при ТУПЫХ углах АОС и АОВ кажется "очевидным"). Оригинальное доказательство привёл Аленицын. А то, что углы равны именно 120о, никакой роли не имеет.
переходи по ссылке там ответ
Пошаговое объяснение:
https://ru-static.z-dn.net/files/d75/1097299133e825ea33368211c25617ce.png