Поскольку при выкладывании по 8 и по 9 плиток в ряд прямоугольников не получается, а остаются неполные ряды, то количество плиток делится на 8 и на 9 с остатками.
Остаток от деления любого числа на 8 не может быть больше 7. По условию это число на 6 больше, чем остаток от деления на 9. Но остаток от деления на 9 тоже не равен нулю. Значит, остаток от деления на 8 может быть равен только 7. А остаток от деления на 9 равен 1.
Общее количество плиток меньше 100, иначе их хватило бы на квадратную площадку со стороной в 10 плиток. Среди чисел меньше 100 надо найти такое, которое делится на 8 с остатком 7 и на 9 с остатком 1. Проверив все числа в пределах 100, делящиеся на 9 с остатком 1, получим ответ: 55 плиток.
Если 15 оставшихся яблок последовательно раздать детям, то двум последним не хватит, так как если у последнего взять одно яблоко и отдать предпоследнему, то, как раз и окажется, что всем, кроме последнего досталось по 5 яблок, а у последнего будет только 3.
Значит детей на два больше, чем 15, итак детей – 17.
Значит яблок 17*4+15 = 68+15 = 83.
Заметим, что если бы яблок было 85, то их можно было бы раздать поровну всем по 5 яблок.
Но их всего 83, поэтому последнему достанется только 3 яблока, если всем предыдущим раздать по 5, как это и сказано в условии.
О т в е т : 83 яблока на 17 детей.