1) скорость катера при движении по течению реки ( х + 2 ) км/час ; скорость катера при движении против течения реки ( х - 2 ) км/час ; время, которое требуется катеру на весь путь между пристанями при движении против течения реки 36 / ( х - 2 ) час ; 2) 20 мин = (20/60 ) часа = 1/3 часа 36 / ( х + 2 ) - ( 1/3 ) = 36 / ( х - 2 ) общий знаменатель ( х + 2)*( x - 2) * 3 ; x ≠ 2 ; x > 0 36 * 3 * ( x - 2 ) - ( x^2 - 4 ) = 36 * 3 * ( x + 2 ) 108x - 216 - x^2 + 4 = 108x + 216 108x - 108x - 216 + 216 - x^2 + 4 = 0 x^2 = 4 x1 = 2 ( не подходит ) x2 = - 2 ( не подходит ) не имеет решений
Докажем сначала вторую часть теоремы. Не ограничивая общности будем считать, что функция монотонно неубывает (для невозрастающей доказательство аналогичное). Возьмем точку . Так как функция монотонна на R, то для . Пусть y - точная верхняя грань . Для не является верхней гранью данного множества. Поэтому .
Если ввести , то получится как раз определение предела слева по Коши. Аналогично доказывается существование правого предела. Из существования левого и правого предела следует, что могут существовать лишь точки разрыва 1-го рода. Если в точке x функция терпит разрыв, то f(x+0)>f(x-0). Так как f(x+0) и f(x-0) имеют вещественные значения, то существует некоторое рациональное число, лежащее между двумя данными. Назовем его h(x). Сопоставим каждой точке разрыва функции f некоторое рациональное число h(x) по правилу, описанному выше. Если - две точки разрыва, то . Отсюда разным точкам разрыва соответствуют различные h(x). Рациональных чисел счетное число, поэтому h(x) - не более чем счетно.