Для начала проясним, что называют приведением дроби к новому знаменателю.
Из основного свойства дроби следует, что любая обыкновенная дробь a/b имеет бесконечно много равных ей дробей, которые получаются при умножении числителя и знаменателя исходной дроби на любое натуральное число m. Таким образом, любую обыкновенную дробь a/b мы можем заменить равной ей дробью с большим числителем и знаменателем вида . Так от исходной дроби мы можем перейти к дроби с новым знаменателем.
Теперь интуитивно понятно, что подразумевает приведение дроби к новому знаменателю. Привести дробь к новому знаменателю – это значит умножить числитель и знаменатель исходной дроби на некоторое натуральное число m, в результате получается дробь с новым знаменателем, причем она равна исходной дроби.
Рассмотрим пример. Пусть дана обыкновенная дробь 11/25, и ее нужно привести к новому знаменателю. Умножим числитель и знаменатель этой дроби на 4. Так как 11·4=44 и 25·4=100, то после умножения мы получим дробь 44/100. В итоге дробь 11/25 приведена к дроби с новым знаменателем вида 44/100. Весь процесс принято записывать в виде следующей цепочки равенств: .
Понятно, что исходную дробь можно привести к множеству разных знаменателей (если бы в рассмотренном выше примере мы провели умножение не на 4, а на другое число, то мы бы пришли к дроби с другим знаменателем). Но новым знаменателем данной дроби могут быть не все числа. Новыми знаменателями дроби a/b могут быть лишь числа b·m, кратные числу b (смотрите делители и кратные). Числа, не кратные числу b, не могут быть новыми делителями дроби.
7х+9-(11х-7)=8
7х+9-11х+7=8
-4х=8-16
-4х=-8
х=(-16):(-4)
х=4
2) 0,4(6х-7)=0,5(3х+7)
2,4х-2,8=1,5х+3,5
2,4х-1,5х=2,8+3,5
0,9х=6,3
х=6,3:0,9
х=7
Пошаговое объяснение: