Одним з відомих нам прикладів такого розкладання є розподільна властивість множення a(b + с) = ab + ас, якщо її записати у зворотному порядку: аb + ас – a(b + с). Це означає, що многочлен аb + ас розклали на два множники а і b + с.
Під час розкладання на множники многочленів із цілими коефіцієнтами множник, який виносять за дужки, обирають так, щоб члени многочлена, який залишиться в дужках, не мали спільного буквеного множника, а модулі їх коефіцієнтів не мали спільних дільників.
Розглянемо кілька прикладів.
Приклад 1. Розкласти вираз на множники:
1) 8m + 4;
2) at + 7ар;
3) 15а3b – 10а2b2.
Р о з в’ я з а н н я.
1)
Спільним множником є число 4, тому
8m + 4 = 4 . 2m + 4 ∙ 1 = 4(2m + 1).
2) Спільним множником є змінна а, тому
At + 7ap = a(t + 7p).
3) У даному випадку спільним числовим множником є найбільший спільний дільник чисел 10 і 15 – число 5, а спільним буквеним множником є одночлен а2b. Отже,
15а3b – 10а2b2 = 5а2b ∙ 3а – 5a2b ∙ b = 5а2b(3а – 2b).
Приклад 2. Розкласти па множники:
1) 2m(b – с) + 3р(b – с);
2) х(у – t) + c(t – у).
Р о з в ‘ я з а н н я.
1) У даному випадку спільним множником є двочлен b = c.
Отже, 2m(B – С) + 3р(B – C) = (b – с)(2m + 3р).
2) Доданки мають множники у – t і t – у, які є протилежними виразами. Тому в другому доданку винесемо за дужки множник -1, одержимо: c(t – у) = – с(у – t).
Отже, х(у – t) + c(t – у) = х(у – t) – с(у – t) = (у – t) (х – с).
Для того чтобы найти точки перегиба данной функции найдем первые производные от данной функции по х и по y:
∂Z / ∂x = Z'x = (x^3 + y^3 - 3xy)'= 3x^2 - 3y;
∂Z / ∂y = Z'y = (x^3 + y^3 - 3xy)' = 3y^2 - 3x;
Решим систему из двух уравнений:
3x^2 - 3y = 0;
3y^2 - 3x = 0;
x^2 - y = 0;
y^2 - x = 0;
x^2 = y;
y^2 = x;
x^4 = x;
x(x^3 - 1) = 0;
x^3 = 1; x1 = 0;
x2 = 1^(1 / 3) = 1, подставим в первое уравнение системы:
y1 = x^2 = (1)^2 = 1; y2 = 0;
Точки перегиба (1 ; 1) и (0; 0);
z1 = 1^3 + 1^3 - 3 * 1 * 1 = 1 + 1 - 3 = - 1;
z2 = 0;
ответ: (1; 1; - 1) и (0; 0; 0).