Данная система — пример системы линейных неравенств с одним неизвестным. Решением системы неравенств с одним неизвестным называется то значение неизвестного, при котором все неравенства системы обращаются в верные числовые неравенства. Решить систему неравенств — это значит найти все решения этой системы или установить, что их нет. Неравенства \( x \geq -2 \) и \( x \leq 3 \) можно записать в виде двойного неравенства: \( -2 \leq x \leq 3 \). ... Решать линейные неравенства с одним неизвестным вы уже научились. Знаете, что такое система неравенств и решение системы. Поэтому процесс решения систем неравенств с одним неизвестным не вызовет у вас затруднений
Пошаговое объяснение:
Уравнение имеет один корень, если его дискриминант равен нулю.
дискриминант этого уравнения равен 4-4*(-a²+2a)=4+4а²-8а=
4*(а-1)²
4*(а-1)²=0⇒а=1
Проверим x²-2x-a²+2a=0
х²-2х-1+2=0
(х-1)²=0⇒х=1, корень один, и он положительный.
это как частный случай. если же сгруппировать члены левой части, то x²-2x-a²+2a=0
(x²-a²)-2(х-a)=0; (х-а)(х+а)-2(х-a)=0; (х-а)(х+а-2)=0
х=а, тогда x²-2x-х²+2х=0; получили 0=0, но надо отобрать только те а, которые положительны.
х+а-2=0
х=2-а
2-а>0 a<2
Если а больше двух, то получим отрицательный корень, если равен двум, то нуль.
ответ х=а, при условии, что а>0, х=2-а, если a<2