Занумеруем фишки числами от 1 до 1000. По условию задачи, менять местами можно либо две четные, либо две нечетные фишки. Если фишка изначалньно находилась на нечетном месте, то в результате любой последовательности обменов она по-прежнему будет находиться на нечетном месте. Нам нужно, чтобы фишка с номером 1 оказалась на месте фишки с номером 1000, но это невозможно, поскольку одна из них находится на четном месте, а вторая на нечетном. Поэтому переставить фишки в обратном порядке нельзя.
Учитываем, что ящик представляет собой прямоугольный параллелепипед с размерами: a - ширина, b - глубина и с - высота Берем меньшую диагональ d₁ = 4. Очевидно, что эта грань является верхней (нижней) и один из ее размеров b - глубина почтового ящика, которая нас и интересует, как минимальное измерение ящика.
ответ
2 примера неправильно решены
Пошаговое объяснение:
(-8)*(-6)=48
(-6)*(-3)=18