1. Так как касательные AB и DE не параллельны (сумма односторонних углов равна 120°, а не 180°), то они пересекутся в некоей точке K.
Треугольник KBD — равнобедренный, так как имеет два угла по 60°, то и третий угол равен 60°.
2. Рассмотрим треугольник ABC. Отрезки касательных, проведённых из одной точки, равны AB=BC. Если угол вершины равнобедренного треугольника равен 60°, то и углы у основания также равны 60°, то есть треугольник — равносторонний и AC = 3,9 см.
3. Так как из точек D и K также проведены касательные, то отрезки касательных равны, и равнобедренные треугольники CDE и EKA с углом вершины 60° являются равносторонними.
4. Сумма трёх углов у точек A, C и E 180°. Если два угла равны 60°, то и третий угол равен 60°. Следовательно, треугольник ACE равносторонний, так как все его углы равны 60°. AC=CE=EA= 3,9 см и PACE= 11,7 см.
Чтобы привести дроби к общему(одинаковому) знаменателю, нужно найти наименьшее число, кратное всем трем дробям, то есть такое число, которое будет делиться без остатка на все три знаменателя. Возьмем для примера дроби под номером 1: 1/2, 2/3, 3/5 в этом случае подходит число 30. Когда искомое число найдено, нужно числитель увеличить во столько же раз, во сколько увеличился знаменатель: 1×15/2×15( числитель умножаем на 15 и знаменатель умножаем на 15), получаем 15/30. Записываем так: 1/2=1×15/2×15=15/30, 2/3=2×10/3×10=20/30, 3/5=3×6/5×6=18/30 С другими примерами так же 2) 1/3=1×21/3×21=21/63, 2/7=2×9/7×9=18/63, 4/9=4×7/9×7=28/63 3)в данном случае нужно сначала сократить дроби 2/6=1/3 2/8=1/4, тогда общим знаменателем будет 12 2/6=2÷2/6÷2=1/3=1×4/3×4=4/12 2/8=2÷2/8÷2=1/4=1×3/4×3=3/12, (5/12 так и останется) 4)11/36=11×2/36×2=22/72, 3/4=3×18/4×18=54/72, 7/72
ответ: 11,7
Пошаговое объяснение:
1. Так как касательные AB и DE не параллельны (сумма односторонних углов равна 120°, а не 180°), то они пересекутся в некоей точке K.
Треугольник KBD — равнобедренный, так как имеет два угла по 60°, то и третий угол равен 60°.
2. Рассмотрим треугольник ABC. Отрезки касательных, проведённых из одной точки, равны AB=BC. Если угол вершины равнобедренного треугольника равен 60°, то и углы у основания также равны 60°, то есть треугольник — равносторонний и AC = 3,9 см.
3. Так как из точек D и K также проведены касательные, то отрезки касательных равны, и равнобедренные треугольники CDE и EKA с углом вершины 60° являются равносторонними.
4. Сумма трёх углов у точек A, C и E 180°. Если два угла равны 60°, то и третий угол равен 60°. Следовательно, треугольник ACE равносторонний, так как все его углы равны 60°. AC=CE=EA= 3,9 см и PACE= 11,7 см.