ответ: 60
Пошаговое объяснение:
Варианты задуманного двузначного числа: 15, 30, 45, 60, 75, 90.
Сначала проверяем нечетные числа:
Добавляем последнюю цифру данного числа - 15 -> 155
По теории деления на 3, 6, 9, сложим все цифры числа 155, чтобы узнать, делится ли сумма на 3.
155:
1 + 5 + 5 = 11, число 11 не делится на 3, а значит не делится на 9.
Можно пропустить нечетные числа.
Рассмотрим четные числа:
Аналогично осмотру нечетных чисел, т.е. так же проверяем четные.
300:
3 + 0 + 0 = 3, число 3 делится на 3, но не одновременно на 9.
300/9 = 33 3/9 (3 - остаток, как мы знаем, а 9 - число, на которое мы делим)
Нам по заданий нужно найти число, которое даёт остаток 6 при делении на 9.
600:
6 + 0 + 0 = 6, число 6 делится на 3, но опять же вместе с этим не делится на 9.
600/9 = 66 6/9 (6 - остаток, 9 - делитель)
900:
9 + 0 + 0 = 9, число делится на 3, и теперь уже заодно на 9.
Мы нашли нужное для ответа задуманное двузначное число по условиям задачи: 60.
1-я сторона = 5 частей,
2-я = 7 частей,
3-я = 11 частей.
Сумма самой большей и самой меньшей сторон = 80, т.е., нужно посмотреть, какая сторона имеет самое большее количество частей, и какая сторона имеет самое меньшее кол-во частей.
В данной задаче самая большая сторона имеет 11 частей, а самая маленькая имеет 5 частей. Нужно сложить эти части: 5+11=16(ч.)
То есть, эти 16 частей равны 80 см, а чтобы узнать, сколько см содержится в одной части, нужно 80:16= 5 (см). Теперь найдем ту часть, которая содержит 7 частей : 7*5= 35 (см).
Теперь мы знаем сумму 1-й и 3-й стороны, и только что вычислили длину 2-й стороны. Чтобы найти периметр, нужно сложить все стороны: Р=80+35=115(см)
ответ: Р=115см