Находим производную функции f(x)=2x²-x⁴+1. y ' = -4x³ + 4x = -4x(x² - 1). Приравниваем производную нулю: -4x(x² - 1) = 0. Отсюда получаем критические точки: х₁ = 0, x² - 1 = 0 x² = 1. х₂ = 1, х₃ = -1. На проміжку [-2;0] имеется 2 критические точки: х = -1 и х = 0. Исследуем значение производной вблизи этих точек. х = -1.5 -1 -0.5 0 0.5 y '=-4x³+4x 7.5 0 -1.5 0 1.5. В точке х = -1 переход от + к -, значит, это максимум, а в точке х = 0 переход от - к +, значит, это минимум.
Рассмотрим три случая: 1) оба числа четные, тогда их сумма будет тоже четной, также как и их произведение. Следовательно, перемножив два четных числа, нечетное не получится
2) оба числа нечетные, тогда их сумма будет четной, а произведение нечетным. Перемножая четное и нечетное число, получится четное число. Тоже мимо
3) одно число четное, а другое нечетное. Тогда их сумма будет нечётной, а их произведение четным. Перемножив нечётное и чётное число, получим четное
1)145/100=1,45-1%
2)1,45*36=52,2(кг)-в первый день
3)145-52,2=92,8(кг)-продали во второй день
ответ: 92,8кг