Всю работу примем за 1.
Пусть две бригады, работая вместе, выполнят работу за х дней. Тогда
за х+9 дней выполнит работу 1-я бригада, работая отдельно, а за х+4 дня - 2-я бригада.
1 (/х+9) - производительность труда 1-ой бригады, 1/(х+4) - произв. 2-ой бригады, 1/х - производительность двух бригад.
1/(х+9) + 1/(х+4) = 1/х, х больше 0.
Умножим обе части уравнения на общий знаменатель х(х+9)(х+4)
х^2 + 4x+x^2+9x-x^2 - 4x - 9x - 36 = 0
x^2 - 36 = 0
x=6 и x=-6
Т.к. х больше 0, то х=6
6+9=15. ответ: за 15 дней.
Пошаговое объяснение:
по формуле Бернулли, вероятность того, что в n испытаниях событие А наступает ровно m раз, равна произведению числа сочетаний из n по m на р в степени m на q в степени (n-m)
здесь р- вероятность наступления события А( событие А- попасть ровно один раз при трех выстрелах)- в одном испытании, а именно эта вероятность по условию 0.9; q=1-0.9=0.1; - вероятность промаха при одном выстреле.
n=3; m=1; р=0.9; q=0.1; (n-m)=2;
число сочетаний из 3 по одному равно 3!/(1!*2!)=3
р^m=0.9¹=0.9; q^(n-m)=0.1³⁻¹=0.01
подставим в формулу все найденное, получим
3*0.9*0.01=0.027 - ответ