easy)lol kek cheburek
№ 2:
при каком значении параметра a уравнение |x^2−2x−3|=a имеет три корня?
введем функцию
y=|x^2−2x−3|
рассмотрим функцию без модуля
y=x^2−2x−3
y=(x−3)(х+1)
при х=3 и х=-1 - у=0
х вершины = 2/2=1
у вершины = 1-2-3=-4
после применения модуля график отражается в верхнюю полуплоскость
при а=0 - 2 корня (нули х=3 и х=-1)
при 0< а< 4 - 4 корня (2 от исходной параболы, 2 от отображенной части)
при а=4 - 3 корня (2 от исходной параболы, 1 от вершины х=1)
при а> 4 - 2 корня (от исходной параболы)
ответ: 4
ответ: a) tgα=-4/3 Б)
Пошаговое объяснение:А) Cosα=-0,6 90°<α<180° (2 четверть); 1+tg²α=1/Cos²α ⇒ tg²α= 1/Cos²α -1 = 1/(-0,6)² - 1= 1/0,36 - 1= 100/36 - 1= 25/9 - 1= 25/9 - 9/9= 16/9, ⇒ tgα=±√√16/9=±4/3
Но 90°<α<180°, во 2 четверти tgα<0, значит tgα=-4/3
Б) sinα,cosα, tgα, ctgα, если sinα=12/13 при п/2 (условие некорректно записано)
Если Sinα= 12/13, то Сos²α=1- Sin²α= 1- (12/13)²=1- 144/169= 25/169 Значит Cosα=±√25/169= ±5/13
Если π/2 <α<π , то Сosα<0, значит Cosα=-5/13;
tgα=Sinα/Cosα = 12/13 : (-5/13)= - 12/5 =-2,4
ctgα=1/tgα= 1: (-12/5)= - 5/12
а) 3*(2у-3)+4у=1
10у=4
у=0,4
х=-2,2
Пошаговое объяснение: