М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
AlinaNeizvestnaya20
AlinaNeizvestnaya20
07.01.2021 05:10 •  Математика

(2;3) сандар жұбы теңдеудің жүйесінің шешімі болатындай a және b сандарын табыңдар​

👇
Открыть все ответы
Ответ:
sonerraz
sonerraz
07.01.2021
Выпишем все числа от 2017 до 20179999, а затем эти же числа, но увеличенные на 14:

2017, 2018, ... 2030, (2031, ... , 20179999)
(2031, ... , 20179999), 20180000, ... , 2018013

В скобки взяты одинаковые части двух последовательностей. При вычитании произведений цифр каждого числа первой последовательности из произведений цифр этого же числа второй последовательности, мы получим нуль.

Осталось перемножить все цифры оставшихся чисел первой и второй последовательности и найти разность.
Произведение цифр каждого числа первой последовательности 2017, 2018, ..., 2029, 2030 равно нулю. Также равно нулю произведение цифр всех оставшихся чисел второй последовательности - 20180000, 20180001, ... , 20180013. Произведения цифр чисел равны нулю, т.к. в каждое число входит цифра 0.
Следовательно, сумма всех чисел, выписанных в тетрадь Фоксом, равно нулю.
4,4(71 оценок)
Ответ:
Juliyabelyakova
Juliyabelyakova
07.01.2021
Ясно, что при n=2k система имеет решение a=3^k, b=0. Покажем, что других решений нет.

Пусть ни одно из чисел a и b не делится на 3. Покажем, что если число имеет остаток 1 или 2 при делении на 3, то квадрат этого числа имеет остаток 1 при делении на 3. Действительно, пусть a=3k+1, тогда a²=9k²+6k+1, если a=3k+2, то a²=9k²+18k+4, в обоих случаях остаток равен 1. Но сумма двух чисел с остатком 1 при делении на 3 не может нацело делиться на 3, получили противоречие.

Теперь рассмотрим случай, когда хотя бы одно из чисел a и b делится на 3. Если только одно число делится на 3, то сумма квадратов не будет делиться на 3, то есть, такой вариант невозможен. Остается случай, когда на 3 делятся оба числа. Пусть a=3^xp^2, b=3^yq^2, где p и q - натуральные числа, не делящиеся на 3. Ясно, что x<n, y<n. Если x=y, то, разделив обе части на 3^x, получим уравнение p^2+q^2=3^{n-x}. Поскольку числа p и q не делятся на 3, а величина n-x больше 0, это уравнение корней не имеет. Наконец, рассмотрим случай, когда x≠y, в силу симметрии можно считать, что x<y. Разделив уравнение на 3^x, имеем p^2+3^{y-x}q^2=3^{n-x}. Первое слагаемое не делится на 3, второе и третье делятся, получили противоречие.

Таким образом, уравнение имеет решение лишь при четных n. Следовательно, оно имеет 515 решений, меньших 1031.
4,4(60 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ