1) найдите дифференциал функции у=cos ^3x dy=y' *dx = 3cosx*(-sinx)dx =(-3cosx*sinx)dx =(-3/2sin2x)dx 2) у=корень(2-х^2) dy =y' *dx = (1/2)(2-x^2)^(-1/2)*(-2x)*dx = (-x/корень(2-x^2))dx или если функция y=корень(2)-x^2 dy = y' *dx = -2xdx 3. решить уравнение 3^(x+2) +9^(x+1) -810=0 9*3^x+9*9^x-810=0 3^x+3^(2x)-90=0 замена переменных 3^x=y y^2+y-90=0 d=1+ 360 =361 y1=(1-19)/2 =-9 ( не может быть так как 3^x не может быть отрицательным) y2=(1+19)/2 =10 найдем х 3^x =10 x=log_3(10)=ln10/ln3 = 2,1
Если разделить весь пройденный путь на два участка, то получается следующее: II пешеход участок пути ( до встречи) за 40 минут, а I пешеход преодолел это же расстояние ( после встречи) за 32 мин. II пешеход участок пути ( после встречи) за х мин. , а I пешеход преодолел это же расстояние ( до встречи) за 40 мин. Получается пропорция: 40 мин. - 32 мин. х мин. - 40 мин. 32х= 40*40 32х= 1600 х= 1600 : 32 х= 50 мин. - время , за которое II пешеход расстояние от места встречи до пункта А. 50 мин. + 40 мин. = 90 мин. = 90/60 ч. = 1 30/60 ч. = 1 1/2 ч. - время , за которое II пешеход расстояние от В до А .