6 см
Пошаговое объяснение:
По условию, трапеция вписана в окружность, значит она равнобедренная, т.е. CD=AB (это свойство трапеции).
Центр О окружности лежит на AD - большем основании трапеции, значит, сторона AD - диаметр трапеции ABCD, а отрезок AO является радиусом трапеции.
Найдём радиус окружности:
r = D/2 = AD/2 =12/2 = 6 см
AO= r = 6 см
Отрезок ОВ = 6 см, т.к. он также является радиусом окружности.
ΔАОВ - равнобедренный, т.к. АО=ОВ=r=6 см.
В равнобедренном треугольнике углы при основании равны, поэтому ∠ОАВ=∠ОВА.
По условию, ∠А=60°. ∠А=∠ОАВ, следовательно, ∠ОВА=60°.
Найдём ∠АОВ:
∠АОВ=180°-(∠ОАВ+∠ОВА)=180°-(60°+60°)=180°-120°=60°
Получается, что ΔАОВ - равносторонний.
Это означает, что АВ=ОА=ОВ=6 см
Т.к. трапеция равнобедренная, то CD=AB=6см
Общее уравнение прямой
Ax + By + C = 0. (2.1)
Вектор n(А,В) ортогонален прямой, числа A и B одновременно не равны нулю.
Уравнение прямой с угловым коэффициентом
y - yo = k (x - xo), (2.2)
где k - угловой коэффициент прямой, то есть k = tg a, где a - величина угла, образованного прямой с осью Оx, M (xo, yo ) - некоторая точка, принадлежащая прямой.
Уравнение (2.2) принимает вид y = kx + b, если M (0, b) есть точка пересечения прямой с осью Оy.
Уравнение прямой в отрезках
x/a + y/b = 1, (2.3)
где a и b - величины отрезков, отсекаемых прямой на осях координат.
Уравнение прямой, проходящей через две данные точки - A(x1, y1) и B(x2, y2 ):
уравнения. (2.4)
Уравнение прямой, проходящей через данную точку A(x1, y1) параллельно данному вектору a(m, n)
уравнение. (2.5)
Нормальное уравнение прямой
rnо - р = 0, (2.6)
где r - радиус-вектор произвольной точки M(x, y) этой прямой, nо - единичный вектор, ортогональный этой прямой и направленный от начала координат к прямой; р - расстояние от начала координат до прямой