Каким образом можно представить закон распределения непрерывной случайной величины, т.е. величины, которая может принимать любые значения на некотором промежутке числовой оси, и число ее возможных значений всегда бесконечно?
Для непрерывной случайной величины вероятность того, что она примет какое-то одно определенное значение, всегда равна нулю. Но можно определить вероятность того, что эта величина примет значение из некоторого промежутка.
Для этого можно использовать функцию плотности распределения вероятностиf(x) (ее еще называютплотностью вероятностиилиплотностью распределения).
Вероятность того, что непрерывная случайная величина х примет значение из некоторого промежутка [a;b], определяют по формуле:
Пошаговое объяснение:
всего в 3-х ящ 69 кг
в каждом --- ? кг, но разная ,> 20 и <30
в 3-ем макс --- ? кг
Решение.
Чтобы в третьем ящике была максимальная масса, надо, чтобы впервых двух была минимально возможная. По условию она не может быть меньше 20 кг, причем, масса не одинаковая.
20 * 3 = 60 (кг) находилось бы в ящиках, если бы во всех трех была масса, равная 20 кг
69 - 60 = 9 (кг) находится дополнительно в ящиках, так как по условию в каждом больше 20 кг
Наименьшее целое число, которое можно добавить в один из ящиков - это 1 кг, тогда во второй нужно добавить 2 кг.
1 + 2 = 3 (кг) нужно добавить в первый и второй ящик вместе
9 - 3 = 6 (кг) --- добавляем в третий ящик
20 + 6 = 26 (кг) максимально возможная масса яблок в третьем ящике.
ответ: 26 кг
y=ctg(x^2+1)·sin6x
(sin(6x)·ctg(x^2+1))' = (ctg(x^2+1))'·sin(6x)+ctg(x^2+1)·(sin(6x))' = 2·x·(-ctg(x^2+1)2-1)·sin(6x)+ctg(x^2+1)·6·cos(6x)
Здесь:
(ctg(x^2+1))' = 2x·(-ctg(x^2+1)2-1)
(sin(6x))' = (sin(6x))'(6x)' = 6·cos(6x)
(6x)' = 6
2·x·(-ctg(x^2+1)2-1)·sin(6x)+6·cos(6x)·ctg(x^2+1)
При вычислении были использованы следующие правила дифференцирования:
(xa)' = axa-1
(a)' = 0
(uv)' = u'v + uv'
(f(g(x)))' = f(x)'*g(x)'