Делаем рисунок к задаче.
Найдя второй угол при основании bc, обнаружим, что треугольник аbc - равнобедренный. А треугольник асh- половина равностороннего треугольника и аh в нем можно найти по формуле высоты равностороннего треугольника ( по теореме Пифагора получим тот же результат).
Найдем bc=2 аh=ас√3
Искомые отношения сторон равны, поэтому
ас:bc=аb:bc=√3 :2 или ½√3
(в решении, данном во вложенном рисунке, опечатка, читаем ас:bc=аb:bc=√3)
---------------------------
Принцип решения второго задания совершенно такой же. Решение во втором рисунке.
а) Покажем, что у 40% драконов может быть 60% голов. Пусть в этом царстве живет 100 драконов: 40 драконов с одной головой, 20 – с двумя головами и 40 – с тремя. Тогда число голов у всех драконов равно 40 • 1 + 20 • 2 + 40 • 3 = 200. При этом все 40 трехглавых драконов, что составляет 40% от общего числа драконов, имеют 40 • 3 = 120 голов, что составляет 120/200 • 100% = 60% от общего числа голов.
б) Пусть число драконов равно х, а общее число голов у них равно у. Предположим, что какие-то 40% драконов имеют 70% голов. Тогда, поскольку каждый из этих драконов имеет не более трех голов, то 0,7у Ј 3 • 0,4х. С другой стороны, поскольку остальные 60% драконов имеют 30% голов и у каждого из них не менее одной головы, то 0,6х Ј 0,3y. Но эти неравенства не могут выполняться одновременно, так как они равносильны соответственно 7у Ј 12х и 12x Ј 6у. Поэтому у 40% драконов не может быть 70% голов.