М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
натали524
натали524
10.02.2020 01:35 •  Математика

Сколько целых решений имеет неравенство –6,5

👇
Ответ:
анна2262
анна2262
10.02.2020

Чтобы узнать, сколько целых решений имеет неравенство -26 < у < 158, нужно найти количество чисел расположено между числами -26 и 158. Для этого нужно найти сумму чисел, которые расположены справа и слева нуля. Между числом -26 и нулем расположено 25 чисел, а между нулем и числом 158 расположено 157 чисел. Не стоит забывать, что ноль тоже целое число, расположенное между -26 и 158. Значит, можно найти сумму чисел --> 25 + 157 + 1 = 183. Это наш ответ: неравенство -26 < у < 158 может иметь 183 решений.

4,5(86 оценок)
Открыть все ответы
Ответ:
DImonist
DImonist
10.02.2020

При условии, что числа повторно использовать нельзя:

Четные числа будут заканчиваться либо на 0, либо на 2, либо на 4, либо на 8

Количество чисел, которые заканчиваются на 0.

Первую цифру числа мы можем выбрать 4-мя вторую 3-мя так как одну цифру мы уже использовали для первой позиции, для 3-ей позиции остается и т.д. Тогда воспользуемся комбинаторным правилом умножения и получим:

4*3*2*1=24

Количество чисел, которые заканчиваются на 2

Первую цифру числа мы можем выбрать 3-мя так ноль не может быть ведущим, вторую цифру тоже 3-мя так добавился ноль, а одна цифра уже использована в первой позиции, для третьей позиции остается 2 числа, а для 4-ой всего одно. Тогда воспользуемся комбинаторным правилом умножения и получим:

3*3*2*1=18

Количество чисел, которые заканчиваются на 4

Аналогично, как считалось для чисел, заканчивающихся на 2

3*3*2*1=18

И так же для 8

3*3*2*1=18

24+18+18+18=78

Если повторно использовать можно:

Одну из цифр 2,3,4,8 можно поставить на первое место. 0,2,3,4,8 можно поставить на второе место. На третье и четвертое места можно поставить одну из неиспользованных цифр. На пятое можно поставить 0,2,4,8 Всего можно поставить - 4∙5∙5∙5∙4 = 2000 чисел.

4,8(71 оценок)
Ответ:
AliceGo2018
AliceGo2018
10.02.2020

При условии, что числа повторно использовать нельзя:

Четные числа будут заканчиваться либо на 0, либо на 2, либо на 4, либо на 8

Количество чисел, которые заканчиваются на 0.

Первую цифру числа мы можем выбрать 4-мя вторую 3-мя так как одну цифру мы уже использовали для первой позиции, для 3-ей позиции остается и т.д. Тогда воспользуемся комбинаторным правилом умножения и получим:

4*3*2*1=24

Количество чисел, которые заканчиваются на 2

Первую цифру числа мы можем выбрать 3-мя так ноль не может быть ведущим, вторую цифру тоже 3-мя так добавился ноль, а одна цифра уже использована в первой позиции, для третьей позиции остается 2 числа, а для 4-ой всего одно. Тогда воспользуемся комбинаторным правилом умножения и получим:

3*3*2*1=18

Количество чисел, которые заканчиваются на 4

Аналогично, как считалось для чисел, заканчивающихся на 2

3*3*2*1=18

И так же для 8

3*3*2*1=18

24+18+18+18=78

Если повторно использовать можно:

Одну из цифр 2,3,4,8 можно поставить на первое место. 0,2,3,4,8 можно поставить на второе место. На третье и четвертое места можно поставить одну из неиспользованных цифр. На пятое можно поставить 0,2,4,8 Всего можно поставить - 4∙5∙5∙5∙4 = 2000 чисел.

4,6(8 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ