Пошаговое объяснение:
1) Проверяем правильность утверждения при малых n.
n=1: 1=1² - верно
n=2: 1+3=2² - верно
n=3: 1+3+5=3² - верно
2) Предположим, что утверждение верно для n=k.
Тогда справедливо равенство 1+3+5++(2k-1)=k².
3) Докажем, что утверждение верно и для n=k+1.
Слева и справа добавим по 2(k+1)-1:
Получим 1+3+5++(2k-1)+(2(k+1)-1)=k²+2(k+1)-1
Преобразуем правую часть.
k²+2(k+1)-1=k²+2k+1=(k+1)².
Таким образом, из того, что 1+3+5++(2k-1)=k², следует то, что
1+3+5++(2k-1)+(2(k+1)-1)=(k+1)² - верно для n=k+1.
первый случайно выбранный человек может родиться в любой день.
вероятность того что второй родится не в тот же день будет 6/7 (всего дней 7, 6 из них "свободны")
аналогично вероятность того что третий родится не в те же дни, что и первые два будет 5/7
и т. д до 7го человека.
"вероятность того, что 7 случайно выбранных человек родятся в 7 разных дней недели" равна вероятности того что произойдут все вышепечисленные события. это их произведение
p = 1*(6/7)*(5/7)*(4/7)*(3/7)*(2/7)*(1/7) = 0.00612 или 0,612%