5
y=kx+1 и y=kx^2−(k−3)x+k приравниваем, решаем и требуем чтобы было 2 корня D>0
kx+1=kx^2−(k−3)x+k
kx^2-(k-3)x+k-kx-1=0
kx^2-(2k-3)x+k-1=0
D=(2k-3)^2-4k(k-1)=4k^2-12k+9-4k^2+4k=-8k+9>0
8k<9
k<9/8
теперь y=kx+1 и y=(2k−1)x^2−2kx+k+9/4 приравниваем и требуем чтобы не было корней D<0
kx+1=(2k−1)x^2−2kx+k+9/4
(2k−1)x^2−2kx+k+9/4-kx-1=0
(2k−1)x^2−3kx+k+5/4=0
D=(3k)^2-4(2k-1)(k+5/4)=9k^2-(2k-1)(4k+5)=9k^2-8k^2+4k-10k+5=k^2-6k+5=(k-1)(k-5)<0
1<k<5
пересекаем k<9/8 и 1<k<5 - ответ 1<k<9/8
ответ 1<k<9/8
16х - 3 = 5 * (3х + 2); 16х - 3 = 15х + 10; 16х - 15х = 10 + 3;
х = 13.
ответ: при х=13 выражение (16х-3) в 5 раз больше выражения (3х+2).
Проверка: 16х-3=16*13-3=208-3=205;
3х+2=3*13+2=39+2=41;
205:41=5
п е р е в о д;
За умовою (16х -3) має бути в 5 разів більше (3х+2), тобто
16х - 3 = 5 * (3х + 2); 16х - 3 = 15х + 10; 16х - 15х = 10 + 3;
х = 13.
Відповідь: при х=13 вираз (16х-3) в 5 разів більше виразу (3х+2).
Перевірка: 16х-3=16*13 -3=208-3=205;
3х+2=3*13+2=39+2=41;
205:41=5