Интервал – это значения варьирующего признака, лежащие в определенных границах. Каждый интервал имеет свою величину, верхнюю и нижнюю границы или хотя бы одну из них. Величина интервала представляет собой разность между верхней и нижней границами интервала. Интервалы группировки в зависимости от их величины бывают равные и неравные.
Область определения или область задания функции — множество, на котором задаётся функция. В каждой точке этого множества значение функции должно быть определено. Если на множестве задана функция, которая отображает множество в другое множество, то множество называется областью определения или областью задания функции.
Думаю поймёшь если прочитаешь!
Не забудь нажать
log(1 + 1/(x + 1)²) (x² + 3x + 2)/(x² - 3x + 4) ≤ 0
одз
1 + 1/(x + 1)² > 0 x ∈ R
1 + 1/(x + 1)² ≠ 1 x ∈ R
(x + 1) ≠ 0 x ≠ -1
(x² + 3x + 2)/(x² - 3x + 4) > 0
x² + 3x + 2 = 0 D = 9 - 8 = 1 x12 = (-3 +- 1)/2 = -2 -1
x² - 3x + 4 = 0 D = 9 - 16 < 0 x∈ R
(x + 1)(x + 2) > 0
x∈ (-∞, -2) U (-1, +∞)
log(1 + 1/(x + 1)²) (x² + 3x + 2)/(x² - 3x + 4) ≤ log(1 + 1/(x + 1)²) 1
1 + 1/(x + 1)² > 1 всегда
(x² + 3x + 2)/(x² - 3x + 4) ≤ 1
(x² + 3x + 2)/(x² - 3x + 4) - 1 ≤ 0
(x² + 3x + 2 - (x² - 3x + 4)) ≤ 0
знаменатель отбрасываем (x² - 3x + 4) он всегда >0
(x² + 3x + 2 - x² + 3x - 4) ≤ 0
6x - 2 ≤ 0
x ≤ 1/3
x∈ (-∞, -2) U (-1, 1/3]
а)5(х-6)= 15(х-8)
5х- 30=15х- 160
5х- 15х=30- 160
-10х=-130
х=-130:(-10)
х=13
в)3(0,4х + 7) - 4(0,8х - 3)= 2
1,2х + 21 - 3,2х + 12=2
1,2х- 3,2х=2-21-12
-2х=-31
х=-31: (-2)
х=15,5
Пошаговое объяснение: