М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
КликКлак11
КликКлак11
03.04.2022 13:33 •  Математика

Решите уравнение:
а) 5(х −6) = 15(х −8);
в) 3(0,4x + 7) – 4(0,8x – 3) = 2.

👇
Ответ:
натали578
натали578
03.04.2022

а)5(х-6)= 15(х-8)

5х- 30=15х- 160

5х- 15х=30- 160

-10х=-130

х=-130:(-10)

х=13

в)3(0,4х + 7) - 4(0,8х - 3)= 2

1,2х + 21 - 3,2х + 12=2

1,2х- 3,2х=2-21-12

-2х=-31

х=-31: (-2)

х=15,5

Пошаговое объяснение:

4,6(8 оценок)
Открыть все ответы
Ответ:
Makalllla1122
Makalllla1122
03.04.2022

Интервал – это значения варьирующего признака, лежащие в определенных границах. Каждый интервал имеет свою величину, верхнюю и нижнюю границы или хотя бы одну из них. Величина интервала представляет собой разность между верхней и нижней границами интервала. Интервалы группировки в зависимости от их величины бывают равные и неравные.

Область определения или область задания функции — множество, на котором задаётся функция. В каждой точке этого множества значение функции должно быть определено. Если на множестве задана функция, которая отображает множество в другое множество, то множество называется областью определения или областью задания функции.

Думаю поймёшь если прочитаешь!

Не забудь нажать

4,6(52 оценок)
Ответ:
araratpashayan5
araratpashayan5
03.04.2022

log(1 + 1/(x + 1)²) (x² + 3x + 2)/(x² - 3x + 4) ≤ 0

одз

1 + 1/(x + 1)² > 0  x ∈ R

1 + 1/(x + 1)² ≠ 1  x ∈ R

(x + 1) ≠ 0 x ≠ -1

(x² + 3x + 2)/(x² - 3x + 4) > 0

x² + 3x + 2 = 0   D = 9 - 8 = 1  x12 = (-3 +- 1)/2 = -2   -1  

x² - 3x + 4 = 0   D = 9 - 16 < 0   x∈ R

(x + 1)(x + 2) > 0

x∈ (-∞, -2) U (-1, +∞)

log(1 + 1/(x + 1)²) (x² + 3x + 2)/(x² - 3x + 4) ≤ log(1 + 1/(x + 1)²) 1

1 + 1/(x + 1)² > 1 всегда

(x² + 3x + 2)/(x² - 3x + 4) ≤ 1

(x² + 3x + 2)/(x² - 3x + 4)  - 1 ≤ 0

(x² + 3x + 2 - (x² - 3x + 4)) ≤ 0

знаменатель отбрасываем (x² - 3x + 4) он всегда >0

(x² + 3x + 2 - x² + 3x - 4) ≤ 0

6x - 2 ≤ 0

x ≤ 1/3

x∈ (-∞, -2) U (-1, 1/3]

4,4(48 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ