М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
mashapa2001
mashapa2001
18.10.2022 03:09 •  Математика

СТОЛБИКОМ без проверки (только не пишите всякую грязь)

👇
Ответ:
Маша20041124
Маша20041124
18.10.2022

Пошаговое объяснение:


СТОЛБИКОМ без проверки (только не пишите всякую грязь)
4,7(77 оценок)
Ответ:
ohwer
ohwer
18.10.2022

Думаю как-то


СТОЛБИКОМ без проверки (только не пишите всякую грязь)
4,7(20 оценок)
Открыть все ответы
Ответ:
тикон3
тикон3
18.10.2022

Пошаговое объяснение:

Решение. Введем событие: X = (Среди выбранных хотя бы одно изделие первого сорта).  Рассмотрим противоположное ему событие: X =(Среди выбранных нет изделий первого сорта).  

 

Используем классическое определение вероятности:  

m

P

n = , где m – число исходов, благоприятствующих осуществлению события, а n – число всех равновозможных элементарных исходов.  

 

3 25

25! 23 24 25

2300

3!22! 1 2 3

n C

⋅ ⋅ = = = = ⋅ ⋅

- число выбрать любые 3 изделия из 25.  

3 10

10! 8 9 10

120

3!7! 1 2 3

m C

⋅ ⋅ = = = = ⋅ ⋅

- число различных выбрать 3 изделия второго сорта  

(из 10).  Искомая вероятность равна ( ) ( ) 120 109 1 1 1 0,948. 2300 115 m P X P X n = − = − = − = ≈  

 

ответ: 0,948.  

 

 

 

Задача 2. На отрезке [ ] 0;2 наудачу выбраны два числа x и y . Найдите вероятность того, что эти числа удовлетворяют неравенству 2 4 4 x y x ≤ ≤ .  

 

Решение. Используем геометрическое определение вероятности. Сделаем схематический чертеж. Берем числа , x y из квадрата [ ] [ ] 0;2 0;2 × .  

 

Рассмотрим условие 2 4 4 x y x ≤ ≤ Строим линии:  

1)  

2

2 4 , . 4 x y x y ≤ ≤

 область выше параболы  

2

4 x y = .  

2)  

4 4 , . y x y x ≤ ≤

область ниже прямой y x = .  

 

Контрольная работа выполнена на сайте www.MatBuro.ru ©МатБюро. Решение задач по математике, статистике, теории вероятностей  

 

 

 

Таким образом, вероятность p равна отношению площади закрашенной фигуры (в которой выполняются условия 1 и 2) к площади всей фигуры (квадрата):  

.

.

фиг

квад

S

p

S =  

 

Площадь квадрата . 2 2 4 квадS = ⋅ = .  Площадь закрашенной области  22 2 2 3 2 3 . 0 0 1 1 1 1 4 2 2 . 4 2 12 2 12 3ô èã x S x dx x x       = − = − = − =            ∫  

 

Тогда вероятность .

.

4/3 1

0,333

4 3

ô èã

êâàä

S

p

S = = = = .  

 

ответ: 0,333.  

 

 

 

Задача 3. Дана схема включения элементов. Вероятность отказа каждого элемента в течение времени Т равна 0,5. Вычислить вероятность отказа всей цепи.  

 

 

 

Контрольная работа выполнена на сайте www.MatBuro.ru ©МатБюро. Решение задач по математике, статистике, теории вероятностей  

 

 

Решение. Рассмотрим события:  

i A  = (Элемент с номером i  откажет), 1,...,6 i = , ( ) 0,5 i P A = , ( ) 0,5 i P A = .  

Искомое событие B = (Цепь откажет), противоположное ему: B = (Цепь работает безотказно).  Выразим событие B через i A . Учитываем, что последовательному соединению отвечает произведение событий, а параллельному – сумма событий. ( ) ( ) 1 2 3 4 5 6 B A A A A A A = ⋅ + ⋅ + + .  

 

Выразим вероятность события B .  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 2 3 1 1 1 1 1 1 0,5 1 0,5 1 0,5 0,672. P B P B P A A A A A A P A P A A P A A A P A P A P A P A P A P A = − = ⋅ + ⋅ + + = = − ⋅ + ⋅ + + = = − ⋅ − ⋅ − = = − ⋅ − ⋅ − ≈

 

 

Использовали формулу для независимых в совокупности событий 1,... n A A :  

1 2 1 2 1 2 1 2 ( ... ) 1 ( ... ) 1 ( ... ) 1 ( ) ( ) ... ( ) n n n n P A A A P A A A P A A A P A P A P A + + + = − + + + = − ⋅ ⋅ ⋅ = − ⋅ ⋅ ⋅ .  

 

ответ: 0,672.  

 

 

Задача 4. Детали изготавливаются на двух станках. На первом станке – 40%, на втором – 60%. Среди деталей, изготовленных на первом станке, брак составляет 2%, на втором – 1,5%. Для контроля случайным образом взята 1 деталь. Найти вероятность событий: А) деталь бракованная,  Б) деталь изготовлена на 1 станке, если при проверке она оказалась не бракованной.  

 

Решение. Введем полную группу гипотез: 1H = (Деталь изготовлена первым станком), 2H = (Деталь изготовлена первым станком).  

 

По условию: ( 1) 0,4 P H = , ( 2) 0,6 P H = .  

 

Введем событие A = (Деталь оказалась бракованной). Условные вероятности даны в задаче: ( | 1) 0,02 P A H = , ( | 2) 0,015 P A H = .  

 

1) Вероятность события A найдем по формуле полной вероятности  ( ) ( | 1) ( 1) ( | 2) ( 2) 0,4 0,02 0,6 0,015 0,017 1,7%. P A P A H P H P A H P H = + = ⋅ + ⋅ = =  

 

2) Найдем вероятность ( ) 1| P H A того, что деталь изготовлена на первом станке, если она при проверке оказалась без брака.

4,4(32 оценок)
Ответ:
Molodoy186
Molodoy186
18.10.2022

10.5. Свойства производных, связанные с арифметическими действиями над функциями

Теорема 3. Если функции y1 = f1(x) и y2 = f2(x) заданы в окрестности точки x0 принадлежит R, а в самой точке x0 имеют конечные производные, то функции lamda1 f1(x) +lamda2 f2(x), lamda1 принадлежит R, lamda1 принадлежит R, f1(x)f2(x), а в случае f2(x0)не равно0 и функции f1(x)/f2(x) также имеют в точке x0 конечные производные; при этом имеют место формулы

(lamda1 y1 +lamda2 y2)' = lamda1 y'1 +lamda2 y'2, (10.21)

(y1y2)' = y'1y2 + y1y'2, (10.22)

(10.23)

(в формулах (10.21)-(10.23) значения всех функций взяты при x = x0).

Прежде всего заметим, что в силу условий теоремы в точке x0 существуют конечные пределы

(дельтаy1/дельтаx) = y'1, (дельтаy2/дельтаx) = y'2.

Докажем теперь последовательно формулы (10.21)-(10.23).

1) Пусть y = lamda1 y1 +lamda2 y2; тогда

дельта y = (lamda1( y1 + дельтаy1) + lamda2( y2 + дельтаy2)) - (lamda1y1 + lamda2y2) = lamda1дельтаy1 + lamda2дельтаy2

и, следовательно,

дельтаy1/дельтаx = lamda1дельтаy1/дельтаx + lamda2дельтаy2/дельтаx.

Перейдя здесь к пределу при дельтаx0, получим формулу (10.21).

2) Пусть y2 = y1y2; тогда

дельта y = ( y1 + дельтаy1)( y2 + дельтаy2)) - y1y2 = y2y1 + y2дельтаy1 + y1дельтаy2 + дельтаy1дельтаy2,

откуда

дельтаy1/дельтаx = y2дельтаy1/дельтаx + y1дельтаy2/дельтаx. (10.24)

Заметив, что в силу непрерывности функции f2 в точке x0 выполняется условие дельтаy2 = 0, и, перейдя в равенстве (10.24) к пределу при дельтаx0, получим формулу (10.22).

3. Пусть f2(x0)не равно0, и y = y1/y2; тогда

следовательно,

Перейдя здесь к пределу при дельтаx0, получим формулу (10.23). начало

Отметим, что из формулы (10.21) при y2 = 0 (так же, как и из формулы (10.22), когда функция y2 равна постоянной, а поэтому y'2 = 0) следует, что постоянную можно выносить из-под знака дифференцирования, т. е.

(lamday)' = lamday', lamda принадлежит R.

Пример. Вычислим производную функции tg x. Применяя формулу (10.23), получим

Итак,

(tg x)' = 1/cos2x.

Аналогично вычисляется

(ctg x)' = -1/sin2x.

Замечание. Поскольку dx = y'dx, то, умножая формулы (10.21)-(10.23) на dx, получим

d(lamda1 y1 +lamda2 y2) = lamda1dy1 +lamda2 dy',

d(y1y2) = y2dy1 + y1dy2,

4,5(86 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ