Что мы имеем: 20 чисел, 13 из которых делятся на 11, и 11 чисел, которые делятся на 13. Логично, что есть числа, которые делятся на 13 и на 11. Их 13+11-20=4 числа. Значит они все делятся на 143. Поскольку это число непарное, то при умножении на не целое число дают остачу, а нам надо целые и натуральные числа, значит умножаем 143 на минимальные натуральные числа. Минимальное с таких "особенных чисел 143,второе - 286(143*2)(2 - следующее целое число после 1.),третье - 143*3=429,а четвертое - 143*4=572,что явно больше 500 Доказано.
ответ: а) 4/91, б) 0, в) 53/65
Пошаговое объяснение:
а) Будем извлекать по одному фрукту. Вероятность того, что первым вынуто яблоко
Р₁ = 6/(6 + 9) = 2/5. Вероятность того, что вторым извлечено яблоко
Р₂ = 5/(5 + 9) = 5/14. Третьим — Р₃ = 4/(4+9) = 4/13. Полную вероятность найдём по формуле умножения вероятностей: Р = Р₁·Р₂·Р₃ = 2·5·4/(5·14·13) = 4/91 ≈ 0,044
б) В данном случае нужно найти вероятность того, что извлекли 2 фрукта. Но известно, что извлекли 3 фрукта. События несовместны, вероятность Р = 0
в) Найдём вероятность того, что не извлечено ни одного яблока. По аналогии с задачей в пункте а), полная вероятность ¬Р равна:
¬Р = 9·8·7/(15·14·13) = 36/(15·13) = 12/65
Тогда вероятность того, что достали хотя бы одно яблоко Р равна:
Р = 1 − ¬P = 53/65 ≈ 0,815
ответ: а) 4/91, б) 0, в) 53/65