Дана функция y=-x^2 + 6x - 5. График этой функции - парабола ветвями вниз. Вершина параболы Хо = -в/2а = -6/-2 = 3, Уо = -9+18-5 = 4. Точки пересечения оси Ох: -х² + 6х - 5 = 0, Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=6^2-4*(-1)*(-5)=36-4*(-1)*(-5)=36-(-4)*(-5)=36-(-4*(-5))=36-(-(-4*5))=36-(-(-20))=36-20=16;Дискриминант больше 0, уравнение имеет 2 корня: x₁=(√16-6)/(2*(-1))=(4-6)/(2*(-1))=-2/(2*(-1))=-2/(-2)=-(-2/2)=-(-1)=1;x₂=(-√16-6)/(2*(-1))=(-4-6)/(2*(-1))=-10/(2*(-1))=-10/(-2)=-(-10/2)=-(-5)=5.Точка пересечения оси Оу берётся из уравнения при х = 0, у = -5.
По графику (и по анализу) определяем: 1) промежуток убывания функции: х ∈ (3; ∞); 2) при каких значениях x функция принимает отрицательные значения: х ∈ (-∞; 1) ∪ (5; +∞).
Пошаговое объяснение:
1.
Если один из корней равен 12,5, то второй найдем из соотношений по теореме Виета, решив систему уравнений:
х1 * х2 = q;
х1 + х2 = -р;
Где q - неизвестно, р = -13, а один из корней 12,5:
х * 12,5 = q;
х + 12,5 = 13;
х = 13 - 12,5 = 0,5;
q = 0,5 * 12,5 = 6,25;
Значит итоговое уравнение должно выглядеть:
x^2 - 13 * x + 6,25 = 0;
Проверим наши корни подстановкой:
х = 12,5;
12,5^2 - 13 * 12,5 + 6,25 = 156,25 - 162,5 + 6,25 = 0;
х = 0,5;
0,5^2 - 13 * 0,5 + 6,25 = 0,25 - 6,5 + 6,25 = 0;
Оба равенства выполняются.