66,1
Пошаговое объяснение:
х -скорость 1
у -скорость 2
t -время встречи 1 и 2
xt-yt=20
yt=10x ⇒t=10x/y, подставляем в 1 и 3 ур-е
xt+9x=9y
(10x/y)(х-у)=20 ⇒х²-ху-2у=0 ⇒у=х²/(х-2)
10x²/y=9у-9х ⇒9у²-9ху-10х²=0
9у²-9ху-10х²=0 решаем относительно у
д=(9х)²+9*4*10х²=441х²=(21х)²
у=(9х±21х)/18=30х/18; -12х/18 подставляем у
30х/18=5х/3=х²/(х-2)
3х²=5х²-10х
2х²=10х
х(х-5)=0 ⇒х=5; 0
-12х/18=-2х/3=х²/(х-2)
-2х²+4х=3х²
5х²-4х=0
х(х-4/5)=0
х=0,8; 0 у=х²/(х-2) ⇒у=0,64/(-1,2) нет решения
ответ: скорость первого 5 км/ч
cos∠(a,b)=(6·(n²-(m+1)²)-5·(m+1)·n)/(4·(m+1)²-9·n²)
Пошаговое объяснение:
Векторов выделим жирным шрифтом.
Скалярное произведение векторов a и b определяется по формуле:
(a, b) = |a|·|b|·cos∠(a,b),
где ∠(a,b) - угол между векторами a и b.
|a|²=(a, a) = ( (m+1)·p+n·q, (m+1)·p+n·q ) =(m+1)²·p²+2·(m+1)·n·(p,q)+n²·q²=
=(m+1)²·|p|²+2·(m+1)·n·(|p|·|q|·cos∠(p,q))+n²·|q|²=
=(m+1)²·2²+2·(m+1)·n·2·3·cos(π/3)+n²·3²=4·(m+1)²+12·(m+1)·n·1/2+9·n²=
=4·(m+1)²+6·(m+1)·n·+9·n²=(2·(m+1)+3·n)²
Тогда |a| = 2·(m+1)+3·n.
|b|²=(b, b) = ( n·p-(m+1)·q, n·p-(m+1)·q ) =n²·p²-2·(m+1)·n·(p,q)+(m+1)²·q²=
=n²·|p|²-2·(m+1)·n·(|p|·|q|·cos∠(p,q))+(m+1)²·|q|²=
=n²·2²-2·(m+1)·n·2·3·cos(π/3)+(m+1)²·3²=4·(m+1)²-12·(m+1)·n·1/2+9·n²=
=4·n²-6·(m+1)·n·+9·(m+1)²=(2·(m+1)-3·n)²
Тогда |b|=2·(m+1)-3·n.
С другой стороны:
(a, b) = ( (m+1)·p+n·q, n·p-(m+1)·q)= (m+1)·n·p²+n²·(q, p)-(m+1)²·(q,p)-(m+1)·n·q²=
=(m+1)·n·|p|²+(n²-(m+1)²)·(|p|·|q|·cos∠(p,q))-(m+1)·n·|q|²=
=(m+1)·n·2²+(n²-(m+1)²)·2·3·cos(π/3)-(m+1)·n·3²=(m+1)·n·(4-9)+(n²-(m+1)²)·6·1/2=
= -5·(m+1)·n+6·(n²-(m+1)²)
Тогда
-5·(m+1)·n+6·(n²-(m+1)²)=(2·(m+1)+3·n)·(2·(m+1)-3·n)·cos∠(a,b)
cos∠(a,b)·(2·(m+1)+3·n)·(2·(m+1)-3·n)= -5·(m+1)·n+6·(n²-(m+1)²)
cos∠(a,b)=(6·(n²-(m+1)²)-5·(m+1)·n)/((2·(m+1)+3·n)·(2·(m+1)-3·n)) или
cos∠(a,b)=(6·(n²-(m+1)²)-5·(m+1)·n)/(4·(m+1)²-9·n²)
3,4
Пошаговое объяснение:
пппмрлалрлрьрдгььоьрьр