A) (x-2)/6 = (2x+3)/8, общий знамен. 24, получаем уравнение 4*(x-2)=3*(2x+3), 4 и 3 дополнительные множители раскрываем скобки: 4x-8=6x+9, 4x-6x=9+8, -2x=17, x=-8,5 в)Исходя из условия получаем, что 2-е выражение больше 1-го на 2, следовательно получается уравнение 3/4-5/6*z-(1/2*z-2/3)=2. Раскрывая скобки получаем : 3/4-5/6*z-1/2*z+2/3=2, приводим к общему знаменателю: 12. Умножаем каждый член уравнения на 12: 3/4*12-5/6*12*z-1/2*z*12+2/3*12=24 9--10z-6z+8=24 -16z+17=24 -16z=24-17 -16z=7 z=-7/16 б) 17-5у=-(17у+19) Раскрываем скобки: 17-5у=-17у-19, -5у+17у=-19-17, 12у=-36, у= -36/12=-3 г) (2,6р-9,8)/р=4, умножаем обе части выражения на р≠0 2,6р-9,8=4р 2,6р-4р=9,8 -1,4р= 9,8 р=9,8/(-1,4) р=-7
Пошаговое объяснение:
Перша автостоянка х машин.
Друга автостоянка (х * 3) машин.
З другої автостоянки перевели 12 автомобілів на першу, стало порівно.
Скільки машин було на кожній стоянці спочатку?
Нехай на першій автостоянці було х машин, тоді на другій автостоянці (х * 3) машин.
Коли з другої автостоянці перевели 12 автомобіля, (х * 3) – 12, на першу (х +12), то машин на стоянках стало порівну. Складемо рівняння.
(х * 3) – 12 = х +12
3х – 12 = х + 12
3х – х = 12 + 12
2х = 24
х = 24 : 2
х = 12
На першій стоянці спочатку було 12 машин.
На другій стоянці спочатку було 12 * 3 = 36 машин.
Відповідь: 1. На першій стоянці спочатку було 12 машин.
2. На другій стоянці спочатку було 36 машин.