М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Danik119200
Danik119200
13.10.2022 07:05 •  Математика

Из точки B1 на окружности верхнего основания цилиндра проведены два отрезка B1A и B1C, точки A и C находятся на окружности нижнего основания цилиндра, при этом отрезок B1A является диагональю осевого сечения B1BAA1, и длина отрезка B1A = c.

Угол между проведёнными отрезками B1A и B1C равен γ, угол между проекциями этих отрезков на нижнем основании цилиндра равен β.

Определи полную поверхность цилиндра.
Желательно рисунок+решение

👇
Ответ:
usimbekovameruert
usimbekovameruert
13.10.2022
Для определения полной поверхности цилиндра нам необходимо выразить площадь боковой поверхности и площадь оснований, а затем сложить их.

Площадь боковой поверхности цилиндра определяется по формуле:
Sб = 2πrh,
где Sб - площадь боковой поверхности,
π - число Пи (примерно равно 3,14),
r - радиус основания цилиндра,
h - высота цилиндра.

Учитывая, что B1A - диагональ осевого сечения B1BAA1 и длина отрезка B1A равна c, можно выразить радиус основания:
r = c/2.

Высота цилиндра равна расстоянию между B1 и A (или C), поэтому вы можем найти высоту, зная угол γ и длину B1A.

Обратимся к рисунку для наглядности:

A ------ B1 ------ C
| γ |
| |
| |
A1 ----------- C1

Поскольку два отрезка B1A и B1C - это радиусы окружности нижнего основания цилиндра, то угол γ является углом в секторе окружности, а по формуле для сектора окружности можем найти длину L дуги между точками A и C:
L = γ * 2πr.

Поскольку отрезок B1A является диагональю осевого сечения B1BAA1, он равен диагонали прямоугольника A1B1BAA1, которая равна диагонали основания B1A1AA1 и дала A1C.
Тогда длина отрезка B1C равна длине отрезка A1C.

Таким образом, площадь боковой поверхности цилиндра составляет:
Sб = 2πrh = 2π(c/2)(A1C).

Площади оснований цилиндра равны площади окружностей с радиусом r. То есть:
Sосн = 2πr^2.

Таким образом, общая площадь поверхности цилиндра равна:
S = Sб + Sосн = 2π(c/2)(A1C) + 2πr^2.

Теперь, чтобы найти знание площади боковой поверхности и площади основания, необходимо найти длину дуги L, длину отрезка B1C и радиус r:

1. Длина дуги L:
L = γ * 2πr = γ * 2π * (c/2).

2. Длина отрезка B1C:
B1C = A1C = L.

3. Радиус основания:
r = c/2.

Теперь можем найти общую площадь поверхности цилиндра:

S = Sб + Sосн = 2π(c/2)(A1C) + 2πr^2 = 2π(c/2)(B1C) + 2π(c/2)^2.

Итак, мы получили формулу для вычисления полной поверхности цилиндра, в выражении которой используются данные по задаче.
4,7(23 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ