АВСД - трапеция вписанная в окружность ⇒ АВСД - равнобедренная трапеция. Точка пересечения диагоналей АС и ВД - точка М . Центр описанной окружности ,точка О,лежит на середине АД. ∠ВМД=∠СМД=80° (как вертикальные углы) ∠АВД и ∠АСД опираются на диаметр АД ⇒ они прямые, то есть ∠АВД=∠АСД=90°. ∠АМД=∠АМС-∠СМД=180°-80°=100° АМ=ДМ ⇒ ΔАМД- равнобедренный ⇒ ∠МАД=∠МДА=(180°-100°):2=40° ΔАВМ: ∠ВАМ=180°-90°-80°=10° ⇒ ∠ВАД=∠ВАМ+∠МАД=10°+40°=50° ∠ВДА=∠ВАД=50° ∠АВС=∠СДА=180°-50°=130° (т.к. ∠АВС и ∠ВАД соответственные углы)
Примеры плоскостей: поверхности окна, парты, школьной доски, но в отличие от этих поверхностей математическая плоскость не ограничена краями. Она простирается бесконечно во все стороны. Прямая – это линия, продолжающаяся бесконечно в обе стороны, любая часть которой, ограниченная двумя точками, является отрезком. Отрезок – это кратчайшая линия, соединяющая две точки. Если продлить отрезок, в одну сторону до бесконечности, получим фигуру, которая называется луч Угол – это фигура, состоящая из двух лучей, выходящих из одной точки
x+60+x-20=180(угол развёрнутый)
2x=140
x=70
AOC=70+60=130
BOC=70-20=50