y=x^2-5x+6=(x-2)(x-3)
1) найти область определения функции; х∈r y∈r2) исследовать функцию на симметричность и периодичность;
непереодическая, f(x)≠-f(-x) f(x)≠ f(-x)
3)нули функции
х=0 у=0 y=0
у=6 х=2 x=3
4) асимптоты
k=lim(x-5+6/x)= ∞
асимптот нет
5) у`=2x-5=0
x=2.5(точка минимума)
y= 6.25-5*2.5+6=6.25-12.5+6=-0.25
6)у``=2
функция вогнутая на всем интервале.
7)график:
парабола, ветви вверх
вершина в (2.5; -0.25)
сам график:
х -скорость 1
у -скорость 2
t -время встречи 1 и 2
xt-yt=20
yt=10x ⇒t=10x/y, подставляем в 1 и 3 ур-е
xt+9x=9y
(10x/y)(х-у)=20 ⇒х²-ху-2у=0 ⇒у=х²/(х-2)
10x²/y=9у-9х ⇒9у²-9ху-10х²=0
9у²-9ху-10х²=0 решаем относительно у
д=(9х)²+9*4*10х²=441х²=(21х)²
у=(9х±21х)/18=30х/18; -12х/18 подставляем у
30х/18=5х/3=х²/(х-2)
3х²=5х²-10х
2х²=10х
х(х-5)=0 ⇒х=5; 0
-12х/18=-2х/3=х²/(х-2)
-2х²+4х=3х²
5х²-4х=0
х(х-4/5)=0
х=0,8; 0 у=х²/(х-2) ⇒у=0,64/(-1,2) нет решения
ответ: скорость первого 5 км/ч
1921
Пошаговое объяснение:
Пусть Олег "сократил" дробь x раз. Тогда, по условию, Аня "сократила" дробь 30-x раз. Тогда Олег отнимает от знаменателя 2019 число 3·x, а Аня число 2·(30-x), то есть отняли число 3·x+2·(30-x). В итоге они получили 1952. Тогда Олег и Аня отняли от знаменателя:
2019 - 1952 = 67.
Поэтому
3·x+2·(30-x)=67
3·x+60-2·x=67
x=67-60=7.
Значит, Олег отнял 7 раз, а Аня отняла 30-7=23.
Тогда Олег отнял от числителя 7 раз 4, а Аня отняла от числителя 23 раза 3. Отсюда, числитель дроби равна
2018-4·7-3·23=2018-28-69=1921.