Мой чертеж - во вложении.
1) Докажем сначала пункт Б).
Т.к. по условию Е-середина АВ, F-середина ВС, то EF-средняя линия ΔАВС. ⇒ FE║AC.
Т.к. BD-высота, то BD⊥AC ⇒ BD⊥FE (если прямая перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и второй прямой). Доказано.
2) Докажем равенство углов EBF и EDF. Пусть BD и EF пересекаются в точке М.
По теореме Фалеса: т.к. FE║AC и F-середина ВС, то М-середина BD.
⇒ в Δ BED EМ-это медиана и высота. ⇒ Δ BED-равнобедренный ⇒ BE=ED.
Аналогично доказывается, что Δ BFD-равнобедренный ⇒ BF=FD.
Рассмотрим Δ EBF и Δ EDF. По доказанному выше они равны по трём сторонам (BE=ED, BF=FD, EF-общая). ⇒∠EBF=∠EDF. Доказано.
1 сторона равна 18 см, 2 сторона 12.7 см, а 3 сторона 17.3 см.
Пошаговое объяснение:
48-18=30
30-4.6=25.4
25.4:2=12.7
12.7+4.6=17.3
26 - 2*5 = 16 (cм) - длина сторон-оснований.
16/2 = 8 (см) - длина средней линии.