Пошаговое объяснение:
рассматриваем два случая, т.к. модуль можно раскрыть с плюсом и с минусом
у вас рассмотрен первый случай, когда модель раскрывают с минусом
|-x| = 6, |x| = 6
|-(|x| - 2)| = 6 - так же верно, отсюда минус
-(|x| - 2) = 6
далее раскрывая скобки получаем запись аналогичную:
(-1) * (|x| - 2)
умножаем (-1) на каждое слагаемое:
(-1) * |x| + (-1) * (-2) = -|x| + 2
так же можно просто запомнить правило:
при умножении на "-" меняем все знаки на противоположные
заметьте, у нас был в скобках |x| стал -|x|, было -2 стало +2
дальнейшее решение:
-|x| + 2 = 6
-|x| = 6 - 2
-|x| = 4
|x| = -4
нет решений, т.к. модуль не может быть отрицательным
рассматриваем второй случай, про который говорили в начале
|x| - 2 = 6
|x| = 6 + 2
|x| = 8
x = -8 или x = 8
2) KL² =NL*LM² NL =x LM=MN -NL =25 -x;
144 =x(25 -x) ;
x² -25x +144 =0;
x = 9
x=16 (по рисунку NL < LM )
ΔKLN : NK² =NL²+ LK²
NK =3*5 =15 (9 =3*3; 12=3*4; 3*5=15)..
ΔKLM : KM² =KL² +LM²
KM =4*5 =20 (12 =4*3; 16=4*4 ;4*5 =20)
3) KE² =EM*EL
EM =KE²/EL =6²/8 =9/2 =4,5
KL² =KE² +EL² =6² +8² =100 =10²
KL =10.
KL² =ML*EL
ML =KL²/EL =100/8 =12,5.;
( 5/EM = ML --EL =12,5 -8 =4,5)
MK² =ML*ME;
MK² =12,5*4,5 =25*0,5*0,5*9;
MK =5*0,5*3 =7,5.
4) MN² =MK² +KN² =5² +²12² =25 +144 =169 =13²;
MN =13;
MK² =MN*MT ;
MT =MK²/MN=5²/13 =25/13.
NT =MN -MT =13 -25/13 =144/13;
KT² =MT*NT=25/13*144/13 =(5*12/13)² ;
KT =5*12/13 =60/13.
или из ΔMTK :
KT² =MK² -MT²² =5² -(25/13)² =(5 -25/13)(5+25/13) =40/13*90/13 =(2*3*10/13)²;
KT =2*3*10/13 =60/13 .