Правило 1. Чтобы вычесть сумму из числа, можно из него вычесть одно слагаемое, а из полученного результата (разности) вычесть второе слагаемое. Например: 126 — (56 + 30) = (126 — 56) — 30 = 40. В общем виде: а — (Ь + с) = (а — Ь) — с. Правило 2. Чтобы вычесть число из суммы, можно вычесть его из одного из слагаемых и к результату прибавить второе слагаемое. Правило 2 можно использовать при вычислении натуральных чисел только в случае, если одно из слагаемых больше вычитаемого числа. Например: (71 + 7) — 51 = (71 — 51) + 7 = 20 + 7 = 27, но нельзя (71 + 7) — 51 = (7 — 51) + 71,так как разность (7 — 51) — ненатуральное число. В общем виде: (а + Ь) — с = (а — с) + Ь.
Задача 1. Расстояние между городами А и В равно 435 км. Из города А в город В со скоростью 60км/ч выехал первый автомобиль, а через час после этого навстречу ему из города В выехал со скоростью 65 км/ч второй автомобиль. На каком расстоянии от города А автомобили встретятся? ответ дайте в километрах. Решение. Через час после выезда первого автомобиля расстояние между автомобилями стало равно 435 – 60 = 375 (км), поэтому автомобили встретятся через время:  Таким образом, до момента встречи первый автомобиль будет находиться в пути 4 часа и проедет 60 · 4 = 240 (км).
Например:
126 — (56 + 30) = (126 — 56) — 30 = 40.
В общем виде:
а — (Ь + с) = (а — Ь) — с.
Правило 2. Чтобы вычесть число из суммы, можно вычесть его из одного из слагаемых и к результату прибавить второе слагаемое.
Правило 2 можно использовать при вычислении натуральных чисел только в случае, если одно из слагаемых больше вычитаемого числа.
Например:
(71 + 7) — 51 = (71 — 51) + 7 = 20 + 7 = 27, но нельзя (71 + 7) — 51 = (7 — 51) + 71,так как разность (7 — 51) — ненатуральное число.
В общем виде: (а + Ь) — с = (а — с) + Ь.