МАЛО ВРЕМЕНИ Каждый из двух согнутых кусков проволоки состоит из 8 участков длины 1. Один из кусков наложили (не разгибая) на другой так, что они частично совпали. Какова наибольшая возможная длина их общей (совпавшей) части?
1)чтобы найти объём пирамиды надо найти площадь основания и высоту Sосн = a²√3/4 = 27√3/4 см² чтобы найти высоту рассмотрим прямоугольный треугольник, гипотенузой которого является боковое ребро, а одним из катетов - высота второй катет найдём по(без чертежа это не объяснить, поэтому пропущу) второй катет равен 3,75 см найдём высоту: =√(25-14,0625)=5√7/4 см Vпир=1/3 * S * h = 1/3 * 27√3/4 * 5√7/4= 45√21/16 см³ 2)опять же для нахождения объёма нам нужно найти площадь основания. Для этого: -найдём половину диаметра из прямоугольного треугольника d/2=√(10²-6²)=8 cм т.к. основание квадрат - Sосн = d²/2 = 16²/2 = 128 cм² Vпир=1/3 * 128 * 6=256 cм³ 3) чтобы найти найти радиус основания, а потом площадь, найдём диаметр квадрата вписанного в основание: d = √(a²+a²) = 4√2 cм => r(основания) = d/2=2√2 cм отсюда площадь основания равна = πr² = 8π cм² Vкон = 1/3 * S * h = 1/3 * 8π * 6 = 16π см³
1)чтобы найти объём пирамиды надо найти площадь основания и высоту Sосн = a²√3/4 = 27√3/4 см² чтобы найти высоту рассмотрим прямоугольный треугольник, гипотенузой которого является боковое ребро, а одним из катетов - высота второй катет найдём по(без чертежа это не объяснить, поэтому пропущу) второй катет равен 3,75 см найдём высоту: =√(25-14,0625)=5√7/4 см Vпир=1/3 * S * h = 1/3 * 27√3/4 * 5√7/4= 45√21/16 см³ 2)опять же для нахождения объёма нам нужно найти площадь основания. Для этого: -найдём половину диаметра из прямоугольного треугольника d/2=√(10²-6²)=8 cм т.к. основание квадрат - Sосн = d²/2 = 16²/2 = 128 cм² Vпир=1/3 * 128 * 6=256 cм³ 3) чтобы найти найти радиус основания, а потом площадь, найдём диаметр квадрата вписанного в основание: d = √(a²+a²) = 4√2 cм => r(основания) = d/2=2√2 cм отсюда площадь основания равна = πr² = 8π cм² Vкон = 1/3 * S * h = 1/3 * 8π * 6 = 16π см³
4
Пошаговое объяснение: