Пошаговое объяснение:
Нам надо 4+6=10 литров разделить на 2 равные части (по 5 литров).
Наполняем 7-литровую доверху, наклоняем 7-литровую на 45° (уровень будет проходить по диагонали от верхнего края окружности дна до нижнего края отверстия ) , выливаем 3,5 литра (3 литра в пустую, остальное 0,5 в 6-литровую) Итак у нас в 7-литровой 3,5 литра. Теперь точно такой фокус проделываем с уже полной 3-литровой кастрюлей, из неё пол-кастрюли или 3*0,5=1,5 л отливаем в 7-литровую и получаем в ней 3,5+1,5=5 л (остальную кашу 1,5 л из трехлитровой можно перелить в шестилитровую)
Даны 3 вершины: A(1,2,3) B(3,1,2) C(2,3,1).
Координаты точки Д(0; у: 0).
Найдём координаты нормального вектора плоскости, проходящей через заданные точки как векторное произведение.
Векторы: АВ = (2; -1; -1), АС = (1; 1; -2).
i j k| i j
2 -1 -1| 2 -1
1 1 -2| 1 1 = 2i -j + 2k + 4j + +1i + 1k = 3i + 3j + 3k = (3; 3; 3).
Находим вектор АД = (-2; (у - 2); -3).
Определяем смешанное произведение (АВхАС)*АД.
(АВхАС) = (3; 3; 3).
АД = (-2; (у - 2); -3).
(АВхАС)*АД = -6 + 3(у - 2) -9 = 3у - 21.
Переходим к уравнению объёма пирамиды: V = (1/6)*(АВхАС)*АД/
Подставим значения объёма V = 3 и произведения.
3 = (1/6)*(3у - 21),
18 = 3у - 21,
3у = 39,
у = 39/3 = 13.
ответ: Д(0; 13; 0).
4,62х+27, 3
Пошаговое объяснение:
4,62x+27,3