Ищем производную первого порядка, анализируем монотонность функции. Ищем значения от -2 и 0, а также от минимума или максимума, который входит в этот промежуток.
Пошаговое объяснение:
f'(x)=4x³-4x+0
f'(x)=4x(x²-1)
4x(x²-1)≥0
Ищем корни:
x=0 и x²=1 ⇒ x= +1 | -1
Рисуем координатную прямую , с метода интервалов устанавливаем знаки. На промежутке от минус бесконечности до -1 функция спадает, а от -1 до 0 возрастает. х = 1 есть минимум.(Там , где будет минус- функция спадает, а там, где плюс - возрастает)
Находим значения в точках(Подставляем в самое первое уравнение) -2, 0, -1 :
f(-2)=16-8+2=10 - МАКСИМАЛЬНОЕ ЗНАЧЕНИЕ
f(0)=0-0+2=2
f(-1)=1-2+2=1 -МИНИМАЛЬНОЕ ЗНАЧЕНИЕ
Ищем производную первого порядка, анализируем монотонность функции. Ищем значения от -2 и 0, а также от минимума или максимума, который входит в этот промежуток.
Пошаговое объяснение:
f'(x)=4x³-4x+0
f'(x)=4x(x²-1)
4x(x²-1)≥0
Ищем корни:
x=0 и x²=1 ⇒ x= +1 | -1
Рисуем координатную прямую , с метода интервалов устанавливаем знаки. На промежутке от минус бесконечности до -1 функция спадает, а от -1 до 0 возрастает. х = 1 есть минимум.(Там , где будет минус- функция спадает, а там, где плюс - возрастает)
Находим значения в точках(Подставляем в самое первое уравнение) -2, 0, -1 :
f(-2)=16-8+2=10 - МАКСИМАЛЬНОЕ ЗНАЧЕНИЕ
f(0)=0-0+2=2
f(-1)=1-2+2=1 -МИНИМАЛЬНОЕ ЗНАЧЕНИЕ
Пошаговое объяснение: х + (х+13) = -42;
2х = -55;
х= -55:2;
х=-27,5.
Перше число= х = -27,5.
Друге число= (х + 13)= -27,5 + 13= -14,5.
Проверка:
-27,5 -14,5 = -42.