найдем производную. (3*3х²(х²-3)-3х³*(2х))/(3²(х²-3)²)=0, когда 9х⁴-27х²-6х⁴=0
3х⁴-27х²=0, х²*(х-3)(х+3)=0, разобьем критическими точками числовую ось и установим знак производной в каждом из образовавшихся интервалов методом интервалов. знаменатель равен нулю, когда х=±√3
-3-√30√33
+ - - - - +
Значит, точки экстремума: х= -3 - точка максимума, х=3 - точка минимума, а сами экстремумы - это значения функции в точках экстремума, т.к. максимум это у(-3)=-27/(3*(9-6)) =-3
максимум у(3)=27/(3*(9-6)) =3
найдем производную. (3*3х²(х²-3)-3х³*(2х))/(3²(х²-3)²)=0, когда 9х⁴-27х²-6х⁴=0
3х⁴-27х²=0, х²*(х-3)(х+3)=0, разобьем критическими точками числовую ось и установим знак производной в каждом из образовавшихся интервалов методом интервалов. знаменатель равен нулю, когда х=±√3
-3-√30√33
+ - - - - +
Значит, точки экстремума: х= -3 - точка максимума, х=3 - точка минимума, а сами экстремумы - это значения функции в точках экстремума, т.к. максимум это у(-3)=-27/(3*(9-6)) =-3
максимум у(3)=27/(3*(9-6)) =3
ответ:5х-10=х+6
5х-х=6+10
4х=16
х= 4
Первое число 20 а второе 4
х+3х+х+5=20
5х=20-5
5х=15
х=3
Первая сторона 3
Вторая 9
Третяя 8
Пошаговое объяснение: