Рассмотрим треугольник ОСВ , он прямоугольный т.к диагонали в ромбе перпендикулярны , ОН - высота - потому что образует с СВ прямой угол, СВ -гипотенуза. Нам известны отрезки СН(3см) и ВН(12см)
Воспользуемся одним из свойств высоты:
Высота, опущенная на гипотенузу, является средней пропорциональной величиной между проекциями катетов на гипотенузу - проекции катетов это и есть данные нам отрезки.
OH^{2} =CH*BH
OH^{2} =3*12
OH^{2} =36
OH= \sqrt{36}
OH=6
CB=CH+BH
CB=3+12
CB=15
S(COB)= \frac{OH*CB}{2}
S(COB)= \frac{15*6}{2}
S(COB)=45
Этот треугольник составляет 1/4 нашего ромба,значит, площадь ромба равна:
S(p)=4*S(COB)
S(p)=4*45
S(p)=180
Обозначим углы при основании в каждом указанном выше треугольнике соответственно как А, А1, А2, А3. Понятно, что угол А - это угол при основании исходного треугольника АВС, а угол А3 - это угол при его вершине.
Найдем значение угла А3, последовательно выражая углы А1, А2, А3 через угол А. Как?
Для примера. Угол А1 есть часть угла А, которая находится как разность угла А и угла АСD. Угол АСD при вершине равнобедренного треугольника АСD равен 180-2А.
И так до конца, т.е до выражения угла А3 через А.
Далее составляется уравнение: 2А+А3(выраженное через А)=180.
Если все правильно выразите, то должно получиться
9А=360, т.е. А=40.
Успехов, дерзайте!