Допустим, за икс мы взяли число –1, тогда выражение у нас получится следующее: Иными словами, для икс –1 соответствует значение игрек, равное 4.
Берём теперь за икс число 0, тогда выражение у нас получится следующее: – для точки икс, равной нулю, соответствует значение игрек, которое также равно нулю.
В итоге получаем две точки – (–1; 4) и (0; 0). Проведи прямую через эти точки и, если тебе это надо, обозначь точки пересечения с осями координат (точка, в которой прямая пересекает ось ординат или ось абсцисс).
30 = 2 * 3 * 5, так что a и b могут содержать в разложении на простые множители только числа 2, 3, 5, притом не более чем в 1 степени.
Пусть a = 2^a1 * 3^a2 * 5^a3 и b = 2^b1 * 3^b2 * 5^b3. Тогда нужно подсчитать число пар троек ((a1, a2, a3), (b1, b2, b3)) таких, что max(ai, bi) = 1 и ai, bi - 0 или 1.
Так как пары (a1, b1), (a2, b2) и (a3, b3) можно выбирать независимо, посмотрим на пару (a1, b1). С учетом ограничений возможны 3 варианта: (0, 1), (1, 0) и (1, 1). Тогда всего пар троек ((a1, a2, a3), (b1, b2, b3)) должно быть 3^3 = 27.
Но так будет, только если пары (a, b) и (b, a) считать различными. Иначе некоторые пары при таком подходе оказываются подсчитанными дважды. Посмотрим, сколько пар мы учли по 2 раза.
Легче подсчитать, сколько пар учтены только один раз. Действительно, один раз учтены те пары, для которых (a, b) и (b, a) - одно и тоже, т.е. пары, в которых a = b. Несложно сообразить, что такая пара только одна - (30, 30). Тогда среди 27 - 1 = 26 пар все подсчитаны дважды.
Таким образом, уникальных (не учитывающих порядок a, b) пар среди 26 последних рассмотренных пар будет ровно 26 / 2 = 13. Добавляя к этим парам еще и (30, 30), получаем ответ
27
Пошаговое объяснение:
(3^8)^2*3^5/3^18
43046721*243/387420489=243/9=27