у= х²-2х-3
1. график парабола, ветви вверх
2. чертим систему координат, отмечаем стрелками положительное направление: вправо и вверх; подписываем оси : вправо - х, вверх -у; отмечаем начало координат - точку О(0; 0) и единичные отрезки по кадой оси в 1 клетку.
3. найдем вершину параболы
х(в) = -b/2a х(в) = 2/2 = 1
у(в) = 1-2-3= -4
В(1;-4)
4) найдем нули функции:
х²-2х-3=0
Д = 4+12=16=4²
х(1) = (2-4)/2 = -1/2
х(2) = (2+4) / 2 = 3
(-1/2; 0) и (3; 0) - нули функции
5) Отметим в системе координат вершину и нули функции
6) Проведём относительно вершины "новую" систему координат и в ней построим график функции у=х². Этот график обязательно пройдет через точки (-1/2; 0) и (3; 0).
7) подпишем график у=х²-2х-3.
Теперь ответим по графику на вопросы:
а) функция возраст при х∈(1;+∞)
функция убывает при х∈(-∞; 1)
б) у(наим) = -4 и достигается в точке х=1
в) у<0 при х∈(-1/2; 3)
Дано:
t(по течению) = 2 ч
t(против течения)=3 ч
v(собств.)=18,6 км/ч
v(теч.)=1,3 км/ч
Найти
S=? км
Решение
1) Найдём скорость катера против течения реки:
v(против течения)=v(собственная) - v (течения реки)=18,6-1,3=17,3 (км/час)
2) Катер плыл 3 часа против течения со скоростью 17,3 км/час. Найдём расстояние, которое катер проплыл против течения:
S(расстояние)=v(скорость)×t(время)
S(против течения)=17,3×3= 51,9 (км)
3) Найдём скорость катера по течению:
v(по течению)=v(собственная) + v (течения реки)=18,6+1,3=19,9 (км/час)
4) Катер плыл 2 часа против течения со скоростью 19,9 км/час. Найдём расстояние, которое катер проплыл по течению:
S(расстояние)=v(скорость)×t(время)
S(по течению)=2×19,9=39,8 (км)
5) Расстояние за 5 часов равно:
S=S(против течения)+S(по течению)=51,9+39,8=91,7 (км)
ОТВЕТ: катер за 5 часов проплыл расстояние 91,7 километров.