где под
подразумевается квадрат переменной
т.е.
а его корнями
– квадраты искомых корней, если они различны, или его чётным корнем
если корень биквадратного трёхчлена
– единственный.
тогда
Потребуем, чтобы
откуда следует, что 
а корень биквадратного трёхчлена станет чётным
давая два искомых корня
Это значение
как раз уже и есть одно из искомых решений для параметра 
всегда будет два – левый и правый (меньший и больший), однако при некоторых обстоятельствах левый квадрат искомых корней будет отрицательным, а значит, не будет давать пару искомых корней. Среднеарифметическое квадратов искомых корней
по теореме Виета, в применении к биквадратному уравнению, будет равно числу, противоположному половине среднего коэффициента, т.е. оно равно
Отсюда следует, что правый квадрат искомых корней
– всегда положителен, а значит, всегда даёт два корня при положительном дискриминанте.
А значит, значение всего трёхчлена
взятое от
должно давать отрицательное значение, т.е. располагается в нижней межкорневой дуге параболы биквадратного трёхчлена.
;
;
;
Пошаговое объяснение:
Вроде правильно посчитал.
1) 60/(4/3)=60*3/4=45 ударов за 1 минуту 1 колокола;
2) 60/(5/3)=60+3/5=36 ударов за 1 минуту 2 колокола;
3)60/2=30 ударов за 1 минуту 3 колокола.
каждые 3 секунды удары первого колокола будут совпадать с ударами 3 колокола.
значит 45*2/3=30 ударов первого колокола, не совпавших с третьим.
так же каждые 3 секунды удары второго колокола будут совпадать с ударами 3 колокола.
значит 36*2/3=24 ударов второго колокола, не совпавших с третьим.
несколько ударов первого и второго колокола тоже будут совпадать. (каждые 5 тактов первого и каждые 4 такта второго). Но 3 из них уже совпадали с тактами 3 колокола.
Итого:30+24+30-6=78 .
x = -11
Пошаговое объяснение:
(5х - 13) + (7х - 16) = 8 - (15 - 14х)
Раскрываем скобки
5x - 13 + 7x -16 = 8 - 15 +14x
-2x = 22
x = -11