В условии задачи не сказано, какое именно количество коротких, средних и длинных было. Но точно, по одной каждого вида, потому что она их резала. Рассмотрим самую "плохую" ситуацию, что было всего по одной средней и длинней, а остальные- короткие. Получается, что из средней у нас есть -15 кусочков, из длинной- 22 кусочка, а из оставшихся 110 коротких ленточек 8*110=880 ленточек. Итого 15+22+880= 917. Очевидно, что это не 2015 ленточек. Получается, что мы не можем сказать, что , однозначно, всех лент хватит на 2015 ленточек
Строишь матрицу по системе уравнений: (x, y, z написал для наглядности)..
...и вектор к нему(из результатов уравнения)
Формула для нахождения определителя методом треугольника: a₁₁*a₂₂*a₃₃ - a₁₁*a₃₂*a₂₃ - a₁₂*a₂₁*a₃₃ + a₁₂*a₃₁*a₂₃ + a₁₃*a₂₁*a₃₂ - a₁₃*a₃₁*a₂₂ (a - элемент матрицы, нижние индексы - позиция элемента в матрице).
Методом треугольника находишь определитель матрицы: ∆ = 3*(-1)*2 - 3*0*3 - 2*5*2 + 2*7*3 + 4*5*0 - 4*7*(-1) = 44 Чтобы решать дальше, определитель не должен быть равен нулю.
Заменяешь первый столбец матрицы(x), на вектор: Методом треугольника находишь определитель матрицы: ∆x = 1*(-1)*2 - 1*0*3 - 2*5*2 + 2*7*3 + (-1)*5*0 - (-1)*7*(-1) = 13
Заменяешь второй столбец матрицы(y), на вектор: Методом треугольника находишь определитель матрицы: ∆y = 3*2*2 - 3*0*(-1) - 2*1*2 + 2*7*(-1) + 4*1*0 - 4*7*2 = -62
Заменяешь третий столбец матрицы(z), на вектор: Методом треугольника находишь определитель матрицы: ∆z = 3*(-1)*(-1) - 3*2*3 - 2*5*(-1) + 2*1*3 + 4*5*2 - 4*1*(-1) = 45
Когда все определители найдены по очереди делишь определители ∆x, ∆y, ∆z на ∆(определитель первой матрицы). x = y = z =