поскольку 4a<9, то a, которое удовлетворяет этому неравенству это 2(4*2 = 8<9). Ну и по смыслу второго неравенства вижу, что если a по-прежнему равно 2, то получается верное неравенство(3*2>4). Других вариантов у нас нет, так как данное число должно удовлетворять одновременно двум неравенствам. Значит, это число
2.
Либо же можно решить систему неравенств:
4a<9 a<2.25
3a>4 a>1+1/3
Находим разумеется пересечение решений этих неравенств, получаю промежуток:
(1+1/3;2.25). Но нас спрашивали в задаче про целые числа, значит a = 2 из этого промежутка 2 единственное целое число
1. 2/7
2. 3/7
3. 5/7
Пошаговое объяснение:
1. 530/1855 разделим числитель и знаменатель на 265 = 2/7
2. 9k/21k разделим числитель и знаменатель на 3k = 3/7
3. 30/42 разделим числитель и знаменатель на 6 = 5/7